IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp955-971.html
   My bibliography  Save this article

Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment

Author

Listed:
  • Shirazi, Ali
  • Taylor, Robert A.
  • White, Stephen D.
  • Morrison, Graham L.

Abstract

This paper presents energetic, economic, and environmental (3E) analyses of four configurations of solar heating and cooling (SHC) systems based on coupling evacuated tube collectors with a single-effect LiBr–H2O absorption chiller. In the first configuration (SHC1), a gas-fired heater is used as the back-up system, while a mechanical compression chiller is employed as the auxiliary cooling system in the second configuration (SHC2). The capacity of the absorption chiller is designed based on the maximum building cooling load in these configurations. The third and fourth configurations (SHC3 and SHC4) are similar to SHC2, but the absorption chiller size is reduced to 50% and 20%, respectively. The results show that the highest primary energy saving is achieved by SHC2, leading to a solar fraction of 71.8% and saving 54.51% primary energy as compared to a reference conventional HVAC system. The economic performance of all configurations is still unsatisfactory (without subsidies) due to their high capital costs. However, if a government subsidy of 50% is considered, the results suggest that SHC4 can be economically feasible, achieving a payback period of 4.1 years, net present value of 568,700 AUD and solar fraction of 43%, contributing to 27.16% decrease in the plant primary energy consumption.

Suggested Citation

  • Shirazi, Ali & Taylor, Robert A. & White, Stephen D. & Morrison, Graham L., 2016. "Transient simulation and parametric study of solar-assisted heating and cooling absorption systems: An energetic, economic and environmental (3E) assessment," Renewable Energy, Elsevier, vol. 86(C), pages 955-971.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:955-971
    DOI: 10.1016/j.renene.2015.09.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302937
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.09.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García Casals, Xavier, 2006. "Solar absorption cooling in Spain: Perspectives and outcomes from the simulation of recent installations," Renewable Energy, Elsevier, vol. 31(9), pages 1371-1389.
    2. Al-Alili, A. & Islam, M.D. & Kubo, I. & Hwang, Y. & Radermacher, R., 2012. "Modeling of a solar powered absorption cycle for Abu Dhabi," Applied Energy, Elsevier, vol. 93(C), pages 160-167.
    3. Hassan, H.Z. & Mohamad, A.A., 2012. "A review on solar cold production through absorption technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 5331-5348.
    4. Boopathi Raja, V. & Shanmugam, V., 2012. "A review and new approach to minimize the cost of solar assisted absorption cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6725-6731.
    5. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    6. Mokhtar, Marwan & Ali, Muhammad Tauha & Bräuniger, Simon & Afshari, Afshin & Sgouridis, Sgouris & Armstrong, Peter & Chiesa, Matteo, 2010. "Systematic comprehensive techno-economic assessment of solar cooling technologies using location-specific climate data," Applied Energy, Elsevier, vol. 87(12), pages 3766-3778, December.
    7. Hang, Yin & Qu, Ming & Zhao, Fu, 2011. "Economical and environmental assessment of an optimized solar cooling system for a medium-sized benchmark office building in Los Angeles, California," Renewable Energy, Elsevier, vol. 36(2), pages 648-658.
    8. Shirazi, Ali & Najafi, Behzad & Aminyavari, Mehdi & Rinaldi, Fabio & Taylor, Robert A., 2014. "Thermal–economic–environmental analysis and multi-objective optimization of an ice thermal energy storage system for gas turbine cycle inlet air cooling," Energy, Elsevier, vol. 69(C), pages 212-226.
    9. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    10. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    11. Baniyounes, Ali M. & Rasul, M.G. & Khan, M.M.K., 2013. "Assessment of solar assisted air conditioning in Central Queensland's subtropical climate, Australia," Renewable Energy, Elsevier, vol. 50(C), pages 334-341.
    12. Assilzadeh, F. & Kalogirou, S.A. & Ali, Y. & Sopian, K., 2005. "Simulation and optimization of a LiBr solar absorption cooling system with evacuated tube collectors," Renewable Energy, Elsevier, vol. 30(8), pages 1143-1159.
    13. Thirugnanasambandam, Mirunalini & Iniyan, S. & Goic, Ranko, 2010. "A review of solar thermal technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 312-322, January.
    14. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    15. Gebreslassie, Berhane H. & Guillén-Gosálbez, Gonzalo & Jiménez, Laureano & Boer, Dieter, 2010. "A systematic tool for the minimization of the life cycle impact of solar assisted absorption cooling systems," Energy, Elsevier, vol. 35(9), pages 3849-3862.
    16. Han, Y.M. & Wang, R.Z. & Dai, Y.J., 2009. "Thermal stratification within the water tank," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(5), pages 1014-1026, June.
    17. Desideri, Umberto & Proietti, Stefania & Sdringola, Paolo, 2009. "Solar-powered cooling systems: Technical and economic analysis on industrial refrigeration and air-conditioning applications," Applied Energy, Elsevier, vol. 86(9), pages 1376-1386, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ahmed, Hossam A. & Megahed, Tamer F. & Mori, Shinsuke & Nada, Sameh & Hassan, Hamdy, 2023. "Novel design of thermo-electric air conditioning system integrated with PV panel for electric vehicles: Performance evaluation," Applied Energy, Elsevier, vol. 349(C).
    2. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    3. Li, Qiyuan & Zheng, Cheng & Shirazi, Ali & Bany Mousa, Osama & Moscia, Fabio & Scott, Jason A. & Taylor, Robert A., 2017. "Design and analysis of a medium-temperature, concentrated solar thermal collector for air-conditioning applications," Applied Energy, Elsevier, vol. 190(C), pages 1159-1173.
    4. Li, Xian & Chen, Jialing & Sun, Xiangyu & Zhao, Yao & Chong, Clive & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Multi-criteria decision making of biomass gasification-based cogeneration systems with heat storage and solid dehumidification of desiccant coated heat exchangers," Energy, Elsevier, vol. 233(C).
    5. Elisa Marrasso & Carlo Roselli & Maurizio Sasso & Francesco Tariello, 2016. "Analysis of a Hybrid Solar-Assisted Trigeneration System," Energies, MDPI, vol. 9(9), pages 1-23, September.
    6. Li, Xian & Lin, Alexander & Young, Chin-Huai & Dai, Yanjun & Wang, Chi-Hwa, 2019. "Energetic and economic evaluation of hybrid solar energy systems in a residential net-zero energy building," Applied Energy, Elsevier, vol. 254(C).
    7. Abdullah Ahmed Bawazir & Daniel Friedrich, 2022. "Evaluation and Design of Large-Scale Solar Adsorption Cooling Systems Based on Energetic, Economic and Environmental Performance," Energies, MDPI, vol. 15(6), pages 1-24, March.
    8. He, Li & Zhang, Shiyue & Chen, Yizhong & Ren, Lixia & Li, Jing, 2018. "Techno-economic potential of a renewable energy-based microgrid system for a sustainable large-scale residential community in Beijing, China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 631-641.
    9. Cui, Yuanlong & Zhu, Jie & Zoras, Stamatis & Liu, Lin, 2021. "Review of the recent advances in dew point evaporative cooling technology: 3E (energy, economic and environmental) assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    10. Federica Cucchiella & Idiano D’Adamo & Massimo Gastaldi, 2017. "Economic Analysis of a Photovoltaic System: A Resource for Residential Households," Energies, MDPI, vol. 10(6), pages 1-15, June.
    11. Chen, Jialing & Li, Xian & Dai, Yanjun & Wang, Chi-Hwa, 2021. "Energetic, economic, and environmental assessment of a Stirling engine based gasification CCHP system," Applied Energy, Elsevier, vol. 281(C).
    12. Sreenath, S. & Sudhakar, K. & AF, Yusop, 2021. "7E analysis of a conceptual utility-scale land-based solar photovoltaic power plant," Energy, Elsevier, vol. 219(C).
    13. Meyers, Steven & Schmitt, Bastian & Vajen, Klaus, 2018. "Renewable process heat from solar thermal and photovoltaics: The development and application of a universal methodology to determine the more economical technology," Applied Energy, Elsevier, vol. 212(C), pages 1537-1552.
    14. Li, Qiyuan & Shirazi, Ali & Zheng, Cheng & Rosengarten, Gary & Scott, Jason A. & Taylor, Robert A., 2016. "Energy concentration limits in solar thermal heating applications," Energy, Elsevier, vol. 96(C), pages 253-267.
    15. Haghighat Mamaghani, Alireza & Avella Escandon, Sebastian Alberto & Najafi, Behzad & Shirazi, Ali & Rinaldi, Fabio, 2016. "Techno-economic feasibility of photovoltaic, wind, diesel and hybrid electrification systems for off-grid rural electrification in Colombia," Renewable Energy, Elsevier, vol. 97(C), pages 293-305.
    16. Yuan, Yu & Wu, Gang & Yang, Qichang & Cheng, Ruifeng & Tong, Yuxin & Zhang, Yi & Fang, Hui & Ma, Qianlei, 2021. "Experimental and analytical optical-thermal performance of evacuated cylindrical tube receiver for solar dish collector," Energy, Elsevier, vol. 234(C).
    17. Li, Qiyuan & Tehrani, S. Saeed Mostafavi & Taylor, Robert A., 2017. "Techno-economic analysis of a concentrating solar collector with built-in shell and tube latent heat thermal energy storage," Energy, Elsevier, vol. 121(C), pages 220-237.
    18. Lugo, S. & García-Valladares, O. & Best, R. & Hernández, J. & Hernández, F., 2019. "Numerical simulation and experimental validation of an evacuated solar collector heating system with gas boiler backup for industrial process heating in warm climates," Renewable Energy, Elsevier, vol. 139(C), pages 1120-1132.
    19. Shen, Jingchun & Zhang, Xingxing & Yang, Tong & Tang, Llewellyn & Cheshmehzangi, Ali & Wu, Yupeng & Huang, Guiqin & Zhong, Dan & Xu, Peng & Liu, Shengchun, 2016. "Characteristic study of a novel compact Solar Thermal Facade (STF) with internally extruded pin–fin flow channel for building integration," Applied Energy, Elsevier, vol. 168(C), pages 48-64.
    20. Gado, Mohamed G. & Hassan, Hamdy, 2023. "Energy-saving potential of compression heat pump using thermal energy storage of phase change materials for cooling and heating applications," Energy, Elsevier, vol. 263(PE).
    21. Petela, Karolina & Manfrida, Giampaolo & Szlek, Andrzej, 2017. "Advantages of variable driving temperature in solar absorption chiller," Renewable Energy, Elsevier, vol. 114(PB), pages 716-724.
    22. Wu, Gang & Yang, Qichang & Zhang, Yi & Fang, Hui & Feng, Chaoqing & Zheng, Hongfei, 2020. "Energy and optical analysis of photovoltaic thermal integrated with rotary linear curved Fresnel lens inside a Chinese solar greenhouse," Energy, Elsevier, vol. 197(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
    2. Nkwetta, Dan Nchelatebe & Sandercock, Jim, 2016. "A state-of-the-art review of solar air-conditioning systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1351-1366.
    3. Alobaid, Mohammad & Hughes, Ben & Calautit, John Kaiser & O’Connor, Dominic & Heyes, Andrew, 2017. "A review of solar driven absorption cooling with photovoltaic thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 728-742.
    4. Zhai, X.Q. & Qu, M. & Li, Yue. & Wang, R.Z., 2011. "A review for research and new design options of solar absorption cooling systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4416-4423.
    5. Cabeza, Luisa F. & Solé, Aran & Barreneche, Camila, 2017. "Review on sorption materials and technologies for heat pumps and thermal energy storage," Renewable Energy, Elsevier, vol. 110(C), pages 3-39.
    6. Al-Ugla, A.A. & El-Shaarawi, M.A.I. & Said, S.A.M. & Al-Qutub, A.M., 2016. "Techno-economic analysis of solar-assisted air-conditioning systems for commercial buildings in Saudi Arabia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1301-1310.
    7. Siddiqui, M.U. & Said, S.A.M., 2015. "A review of solar powered absorption systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 93-115.
    8. Chidambaram, L.A. & Ramana, A.S. & Kamaraj, G. & Velraj, R., 2011. "Review of solar cooling methods and thermal storage options," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3220-3228, August.
    9. Baniyounes, Ali M. & Ghadi, Yazeed Yasin & Rasul, M.G. & Khan, M.M.K., 2013. "An overview of solar assisted air conditioning in Queensland's subtropical regions, Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 781-804.
    10. Gupta, A. & Anand, Y. & Tyagi, S.K. & Anand, S., 2016. "Economic and thermodynamic study of different cooling options: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 164-194.
    11. Jia, Yuting & Alva, Guruprasad & Fang, Guiyin, 2019. "Development and applications of photovoltaic–thermal systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 249-265.
    12. Buonomano, Annamaria & Calise, Francesco & Ferruzzi, Gabriele, 2013. "Thermoeconomic analysis of storage systems for solar heating and cooling systems: A comparison between variable-volume and fixed-volume tanks," Energy, Elsevier, vol. 59(C), pages 600-616.
    13. Praene, Jean Philippe & Marc, Olivier & Lucas, Franck & Miranville, Frédéric, 2011. "Simulation and experimental investigation of solar absorption cooling system in Reunion Island," Applied Energy, Elsevier, vol. 88(3), pages 831-839, March.
    14. Zeyghami, Mehdi & Goswami, D. Yogi & Stefanakos, Elias, 2015. "A review of solar thermo-mechanical refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1428-1445.
    15. Cabrera, F.J. & Fernández-García, A. & Silva, R.M.P. & Pérez-García, M., 2013. "Use of parabolic trough solar collectors for solar refrigeration and air-conditioning applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 103-118.
    16. Rosiek, Sabina & Batlles, Francisco Javier, 2013. "Renewable energy solutions for building cooling, heating and power system installed in an institutional building: Case study in southern Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 147-168.
    17. Hang, Yin & Du, Lili & Qu, Ming & Peeta, Srinivas, 2013. "Multi-objective optimization of integrated solar absorption cooling and heating systems for medium-sized office buildings," Renewable Energy, Elsevier, vol. 52(C), pages 67-78.
    18. Altun, A.F. & Kilic, M., 2020. "Economic feasibility analysis with the parametric dynamic simulation of a single effect solar absorption cooling system for various climatic regions in Turkey," Renewable Energy, Elsevier, vol. 152(C), pages 75-93.
    19. Ullah, K.R. & Saidur, R. & Ping, H.W. & Akikur, R.K. & Shuvo, N.H., 2013. "A review of solar thermal refrigeration and cooling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 499-513.
    20. María Herrando & Alba Ramos, 2022. "Photovoltaic-Thermal (PV-T) Systems for Combined Cooling, Heating and Power in Buildings: A Review," Energies, MDPI, vol. 15(9), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:955-971. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.