IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v86y2016icp441-448.html
   My bibliography  Save this article

Theoretical study on the power take-off estimation of heaving buoy wave energy converter

Author

Listed:
  • Shi, Hongda
  • Cao, Feifei
  • Liu, Zhen
  • Qu, Na

Abstract

Heaving buoy wave energy converter is applicable to small wave height and short wave period, which are the main characteristics of the China Sea. The device captures the wave power by buoy's heaving motion, transfers it by hydraulic system, and converts it into the electric power by generator. Power Take-Off (PTO) of the device is related to the resistance of the hydraulic system. However, effects of the hydraulic damping on the motion of buoy are often neglected and the study on the optimal hydraulic system is rare. In this paper, a new theoretical analysis has been developed, which is more applicable to the buoy considering hydraulic system. The paper establishes the governing equation considering buoyancy, wave dynamic force and hydraulic damping. The displacement and the velocity of the buoy are both obtained. The time-averaged power captured is calculated by integrating the square-velocity expression derived, and the existence of the maximum PTO is proved. Theoretical result is compared with the experimental result. The paper demonstrates the displacements and average output power of the buoy with different values of damping and inertia coefficients. The results of the study could be a guidance for the PTO design of the heaving buoy sets.

Suggested Citation

  • Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
  • Handle: RePEc:eee:renene:v:86:y:2016:i:c:p:441-448
    DOI: 10.1016/j.renene.2015.08.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115302275
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.08.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Agamloh, Emmanuel B. & Wallace, Alan K. & von Jouanne, Annette, 2008. "Application of fluid–structure interaction simulation of an ocean wave energy extraction device," Renewable Energy, Elsevier, vol. 33(4), pages 748-757.
    2. Truong, Dinh Quang & Ahn, Kyoung Kwan, 2014. "Development of a novel point absorber in heave for wave energy conversion," Renewable Energy, Elsevier, vol. 65(C), pages 183-191.
    3. Renzi, E. & Abdolali, A. & Bellotti, G. & Dias, F., 2014. "Wave-power absorption from a finite array of oscillating wave surge converters," Renewable Energy, Elsevier, vol. 63(C), pages 55-68.
    4. Anbarsooz, M. & Passandideh-Fard, M. & Moghiman, M., 2014. "Numerical simulation of a submerged cylindrical wave energy converter," Renewable Energy, Elsevier, vol. 64(C), pages 132-143.
    5. Wahyudie, A. & Jama, M.A. & Saeed, O. & Noura, H. & Assi, A. & Harib, K., 2015. "Robust and low computational cost controller for improving captured power in heaving wave energy converters," Renewable Energy, Elsevier, vol. 82(C), pages 114-124.
    6. Muliawan, Made Jaya & Karimirad, Madjid & Moan, Torgeir, 2013. "Dynamic response and power performance of a combined Spar-type floating wind turbine and coaxial floating wave energy converter," Renewable Energy, Elsevier, vol. 50(C), pages 47-57.
    7. Wang, Shujie & Yuan, Peng & Li, Dong & Jiao, Yuhe, 2011. "An overview of ocean renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 91-111, January.
    8. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    9. Pelc, Robin & Fujita, Rod M., 2002. "Renewable energy from the ocean," Marine Policy, Elsevier, vol. 26(6), pages 471-479, November.
    10. Ahn, K.K. & Truong, D.Q. & Tien, Hoang Huu & Yoon, Jong Il, 2012. "An innovative design of wave energy converter," Renewable Energy, Elsevier, vol. 42(C), pages 186-194.
    11. Dalton, G.J. & Alcorn, R. & Lewis, T., 2010. "Case study feasibility analysis of the Pelamis wave energy convertor in Ireland, Portugal and North America," Renewable Energy, Elsevier, vol. 35(2), pages 443-455.
    12. Li, Ye & Yu, Yi-Hsiang, 2012. "A synthesis of numerical methods for modeling wave energy converter-point absorbers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 4352-4364.
    13. Zhang, Dahai & Li, Wei & Lin, Yonggang & Bao, Jingwei, 2012. "An overview of hydraulic systems in wave energy application in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4522-4526.
    14. Kurniawan, Adi & Pedersen, Eilif & Moan, Torgeir, 2012. "Bond graph modelling of a wave energy conversion system with hydraulic power take-off," Renewable Energy, Elsevier, vol. 38(1), pages 234-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shi, Hongda & Zhao, Chenyu & Hann, Martyn & Greaves, Deborah & Han, Zhi & Cao, Feifei, 2019. "WHTO: A methodology of calculating the energy extraction of wave energy convertors based on wave height reduction," Energy, Elsevier, vol. 185(C), pages 299-315.
    2. Qiu, Shouqiang & Liu, Kun & Wang, Dongjiao & Ye, Jiawei & Liang, Fulin, 2019. "A comprehensive review of ocean wave energy research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    3. Yadong Wen & Weijun Wang & Hua Liu & Longbo Mao & Hongju Mi & Wenqiang Wang & Guoping Zhang, 2018. "A Shape Optimization Method of a Specified Point Absorber Wave Energy Converter for the South China Sea," Energies, MDPI, vol. 11(10), pages 1-22, October.
    4. Jahangir, Mohammad Hossein & Hosseini, Seyed Sina & Mehrpooya, Mehdi, 2018. "A detailed theoretical modeling and parametric investigation of potential power in heaving buoys," Energy, Elsevier, vol. 154(C), pages 201-209.
    5. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    6. Yu, Tongshun & Chen, Xingyu & Tang, Yuying & Wang, Junrong & Wang, Yuqiao & Huang, Shuting, 2023. "Numerical modelling of wave run-up heights and loads on multi-degree-of-freedom buoy wave energy converters," Applied Energy, Elsevier, vol. 344(C).
    7. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    8. Murai, Motohiko & Li, Qiao & Funada, Junki, 2021. "Study on power generation of single Point Absorber Wave Energy Converters (PA-WECs) and arrays of PA-WECs," Renewable Energy, Elsevier, vol. 164(C), pages 1121-1132.
    9. Chen, Weixing & Wu, Zheng & Liu, Jimu & Jin, Zhenlin & Zhang, Xiantao & Gao, Feng, 2021. "Efficiency analysis of a 3-DOF wave energy converter (SJTU-WEC) based on modeling, simulation and experiment," Energy, Elsevier, vol. 220(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    2. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    3. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    4. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    5. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    6. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Soares, C. Guedes, 2018. "Design tradeoffs of an oil-hydraulic power take-off for wave energy converters," Renewable Energy, Elsevier, vol. 129(PA), pages 245-259.
    7. Mohd Afifi Jusoh & Mohd Zamri Ibrahim & Muhamad Zalani Daud & Aliashim Albani & Zulkifli Mohd Yusop, 2019. "Hydraulic Power Take-Off Concepts for Wave Energy Conversion System: A Review," Energies, MDPI, vol. 12(23), pages 1-23, November.
    8. Qiu, Shouqiang & Liu, Kun & Wang, Dongjiao & Ye, Jiawei & Liang, Fulin, 2019. "A comprehensive review of ocean wave energy research and development in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    9. Ghasemi, Amirmahdi & Anbarsooz, Morteza & Malvandi, Amir & Ghasemi, Amirhossein & Hedayati, Faraz, 2017. "A nonlinear computational modeling of wave energy converters: A tethered point absorber and a bottom-hinged flap device," Renewable Energy, Elsevier, vol. 103(C), pages 774-785.
    10. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    11. Lin, Yonggang & Bao, Jingwei & Liu, Hongwei & Li, Wei & Tu, Le & Zhang, Dahai, 2015. "Review of hydraulic transmission technologies for wave power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 194-203.
    12. Windt, Christian & Davidson, Josh & Ringwood, John V., 2018. "High-fidelity numerical modelling of ocean wave energy systems: A review of computational fluid dynamics-based numerical wave tanks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 610-630.
    13. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    14. Bertram, D.V. & Tarighaleslami, A.H. & Walmsley, M.R.W. & Atkins, M.J. & Glasgow, G.D.E., 2020. "A systematic approach for selecting suitable wave energy converters for potential wave energy farm sites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Jin, Siya & Patton, Ron J. & Guo, Bingyong, 2018. "Viscosity effect on a point absorber wave energy converter hydrodynamics validated by simulation and experiment," Renewable Energy, Elsevier, vol. 129(PA), pages 500-512.
    16. Fadaeenejad, M. & Shamsipour, R. & Rokni, S.D. & Gomes, C., 2014. "New approaches in harnessing wave energy: With special attention to small islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 345-354.
    17. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    18. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    19. Seyed Abolfazl Mortazavizadeh & Reza Yazdanpanah & David Campos Gaona & Olimpo Anaya-Lara, 2023. "Fault Diagnosis and Condition Monitoring in Wave Energy Converters: A Review," Energies, MDPI, vol. 16(19), pages 1-16, September.
    20. Valentina Vannucchi & Lorenzo Cappietti, 2016. "Wave Energy Assessment and Performance Estimation of State of the Art Wave Energy Converters in Italian Hotspots," Sustainability, MDPI, vol. 8(12), pages 1-21, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:86:y:2016:i:c:p:441-448. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.