IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v42y2012icp186-194.html
   My bibliography  Save this article

An innovative design of wave energy converter

Author

Listed:
  • Ahn, K.K.
  • Truong, D.Q.
  • Tien, Hoang Huu
  • Yoon, Jong Il

Abstract

The aim of this research is to develop an innovative approach for electric power conversion of the vast ocean wave energy. A floating-buoy wave energy converter (WEC) using hydrostatic transmission (HST), which is shortened as HSTWEC, has been proposed to enhance the wave energy generation from wave fluctuations. In the HSTWEC device, the power take-off system (PTO) was combined with an HST circuit and an electric generator to convert the mechanical energy generated by wave energy into electrical energy. Design concept and working principle of the HST circuit were firstly derived. Next, a mathematical model, control concepts and selections of main components of the HSTWEC system has been carried out for an adequate investigation of the suggested system. Finally, simulations using MATLAB/Simulink and AMESim software have been performed in order to verify the effectiveness of the proposed HSTWEC. The simulation results show that more than 65% of wave energy can be absorbed by using the HSTWEC device.

Suggested Citation

  • Ahn, K.K. & Truong, D.Q. & Tien, Hoang Huu & Yoon, Jong Il, 2012. "An innovative design of wave energy converter," Renewable Energy, Elsevier, vol. 42(C), pages 186-194.
  • Handle: RePEc:eee:renene:v:42:y:2012:i:c:p:186-194
    DOI: 10.1016/j.renene.2011.08.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111004642
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.08.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tedd, James & Peter Kofoed, Jens, 2009. "Measurements of overtopping flow time series on the Wave Dragon, wave energy converter," Renewable Energy, Elsevier, vol. 34(3), pages 711-717.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Hongwei & Lin, Yonggang & Shi, Maoshun & Li, Wei & Gu, Haigang & Xu, Quankun & Tu, Le, 2015. "A novel hydraulic-mechanical hybrid transmission in tidal current turbines," Renewable Energy, Elsevier, vol. 81(C), pages 31-42.
    2. Guizzi, Giuseppe Leo & Manno, Michele & Manzi, Guido & Salvatori, Marco & Serpella, Domenico, 2014. "Preliminary study on a kinetic energy recovery system for sailing yachts," Renewable Energy, Elsevier, vol. 62(C), pages 216-225.
    3. Li, Boyang & Li, Canpeng & Zhang, Baoshou & Deng, Fang & Yang, Hualin, 2023. "The effect of the different spacing ratios on wave energy converter of three floating bodies," Energy, Elsevier, vol. 268(C).
    4. Khan, N. & Kalair, A. & Abas, N. & Haider, A., 2017. "Review of ocean tidal, wave and thermal energy technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 590-604.
    5. Sierra, J.P. & González-Marco, D. & Sospedra, J. & Gironella, X. & Mösso, C. & Sánchez-Arcilla, A., 2013. "Wave energy resource assessment in Lanzarote (Spain)," Renewable Energy, Elsevier, vol. 55(C), pages 480-489.
    6. Truong, Dinh Quang & Ahn, Kyoung Kwan, 2014. "Development of a novel point absorber in heave for wave energy conversion," Renewable Energy, Elsevier, vol. 65(C), pages 183-191.
    7. Jing Zhang & Haitao Yu & Zhenchuan Shi, 2018. "Design and Experiment Analysis of a Direct-Drive Wave Energy Converter with a Linear Generator," Energies, MDPI, vol. 11(4), pages 1-15, March.
    8. Wang, Bohan & Deng, Ziwei & Zhang, Baocheng, 2022. "Simulation of a novel wind–wave hybrid power generation system with hydraulic transmission," Energy, Elsevier, vol. 238(PB).
    9. Tao Wang & He Wang, 2017. "Research on an Integrated Hydrostatic-Driven Electric Generator with Controllable Load for Renewable Energy Applications," Energies, MDPI, vol. 10(9), pages 1-17, August.
    10. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    11. Bonovas, Markos I. & Anagnostopoulos, Ioannis S., 2020. "Modelling of operation and optimum design of a wave power take-off system with energy storage," Renewable Energy, Elsevier, vol. 147(P1), pages 502-514.
    12. Jing Zhang & Haitao Yu & Zhenchuan Shi, 2019. "Analysis of a PM Linear Generator with Double Translators for Complementary Energy Generation Platform," Energies, MDPI, vol. 12(24), pages 1-12, December.
    13. Shi, Hongda & Cao, Feifei & Liu, Zhen & Qu, Na, 2016. "Theoretical study on the power take-off estimation of heaving buoy wave energy converter," Renewable Energy, Elsevier, vol. 86(C), pages 441-448.
    14. Kim, Gunwoo & Lee, Myung Eun & Lee, Kwang Soo & Park, Jin-Soon & Jeong, Weon Mu & Kang, Sok Kuh & Soh, Jae-Gwi & Kim, Hanna, 2012. "An overview of ocean renewable energy resources in Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2278-2288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qiao Li & Motohiko Murai & Syu Kuwada, 2018. "A Study on Electrical Power for Multiple Linear Wave Energy Converter Considering the Interaction Effect," Energies, MDPI, vol. 11(11), pages 1-20, November.
    2. David Gallach-Sánchez & Peter Troch & Andreas Kortenhaus, 2018. "A Critical Analysis and Validation of the Accuracy of Wave Overtopping Prediction Formulae for OWECs," Energies, MDPI, vol. 11(1), pages 1-20, January.
    3. Martins, J.C. & Goulart, M.M. & Gomes, M. das N. & Souza, J.A. & Rocha, L.A.O. & Isoldi, L.A. & dos Santos, E.D., 2018. "Geometric evaluation of the main operational principle of an overtopping wave energy converter by means of Constructal Design," Renewable Energy, Elsevier, vol. 118(C), pages 727-741.
    4. Liu, Zhen & Shi, Hongda & Cui, Ying & Kim, Kilwon, 2017. "Experimental study on overtopping performance of a circular ramp wave energy converter," Renewable Energy, Elsevier, vol. 104(C), pages 163-176.
    5. Ozkop, Emre & Altas, Ismail H., 2017. "Control, power and electrical components in wave energy conversion systems: A review of the technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 106-115.
    6. Veigas, M. & Ramos, V. & Iglesias, G., 2014. "A wave farm for an island: Detailed effects on the nearshore wave climate," Energy, Elsevier, vol. 69(C), pages 801-812.
    7. José Manuel Oliver & Maria Dolores Esteban & José-Santos López-Gutiérrez & Vicente Negro & Maria Graça Neves, 2021. "Optimizing Wave Overtopping Energy Converters by ANN Modelling: Evaluating the Overtopping Rate Forecasting as the First Step," Sustainability, MDPI, vol. 13(3), pages 1-25, February.
    8. Lindroth, Simon & Leijon, Mats, 2011. "Offshore wave power measurements—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4274-4285.
    9. Truong, Dinh Quang & Ahn, Kyoung Kwan, 2014. "Development of a novel point absorber in heave for wave energy conversion," Renewable Energy, Elsevier, vol. 65(C), pages 183-191.
    10. Tunde Aderinto & Hua Li, 2018. "Ocean Wave Energy Converters: Status and Challenges," Energies, MDPI, vol. 11(5), pages 1-26, May.
    11. Yulong Liu & Xiaodong Zhang & Shuangxia Niu & Weinong Fu & Xinhua Guo, 2020. "Design and Analysis of a Linear Memory Machine for Ocean Wave Power Generation," Energies, MDPI, vol. 13(19), pages 1-12, October.
    12. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2021. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 2: Experimental validation," Renewable Energy, Elsevier, vol. 171(C), pages 1002-1013.
    13. Iglesias, G. & Carballo, R., 2011. "Wave resource in El Hierro—an island towards energy self-sufficiency," Renewable Energy, Elsevier, vol. 36(2), pages 689-698.
    14. Qitao Huang & Peng Wang & Yudong Liu & Bowen Li, 2022. "Modeling and Simulation of Hydraulic Power Take-Off Based on AQWA," Energies, MDPI, vol. 15(11), pages 1-11, May.
    15. Carrelhas, A.A.D. & Gato, L.M.C. & Falcão, A.F.O. & Henriques, J.C.C., 2022. "Control law design for the air-turbine-generator set of a fully submerged 1.5 MW mWave prototype. Part 1: Numerical modelling," Renewable Energy, Elsevier, vol. 181(C), pages 1402-1418.
    16. Milad Shadman & Corbiniano Silva & Daiane Faller & Zhijia Wu & Luiz Paulo de Freitas Assad & Luiz Landau & Carlos Levi & Segen F. Estefen, 2019. "Ocean Renewable Energy Potential, Technology, and Deployments: A Case Study of Brazil," Energies, MDPI, vol. 12(19), pages 1-37, September.
    17. Iglesias, G. & Carballo, R., 2014. "Wave farm impact: The role of farm-to-coast distance," Renewable Energy, Elsevier, vol. 69(C), pages 375-385.
    18. Domenico Curto & Vincenzo Franzitta & Andrea Guercio, 2021. "Sea Wave Energy. A Review of the Current Technologies and Perspectives," Energies, MDPI, vol. 14(20), pages 1-31, October.
    19. Carballo, R. & Iglesias, G., 2013. "Wave farm impact based on realistic wave-WEC interaction," Energy, Elsevier, vol. 51(C), pages 216-229.
    20. Ji, Xueyu & Shami, Elie Al & Monty, Jason & Wang, Xu, 2020. "Modelling of linear and non-linear two-body wave energy converters under regular and irregular wave conditions," Renewable Energy, Elsevier, vol. 147(P1), pages 487-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:42:y:2012:i:c:p:186-194. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.