IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v80y2015icp674-681.html
   My bibliography  Save this article

Preliminary investigation to characterize deposits forming during combustion of biogas from anaerobic digesters and landfills

Author

Listed:
  • Surita, Sharon C.
  • Tansel, Berrin

Abstract

The objectives of this study were to compare composition and morphological characteristics of the deposits forming in engines operated with biogas from anaerobic digesters and from landfills. Engine deposit samples were collected from biogas to energy facilities in Florida, USA. The deposit samples were analyzed by scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS). Similarities and differences between the deposit samples collected from the engines operated with biogas from anaerobic digesters and biogas from landfills were analyzed in terms of chemical composition and morphology. The sample obtained from the anaerobic digester gas did not contain potassium while calcium and zinc were present at a higher ratio. Relatively high levels of carbon were present in the crystalline deposits forming during the combustion of biogas. C:O:Si ratios were about 5:7:1 in the deposits obtained from the engines operated with biogas from the anaerobic digesters and 2:3.5:1 in the deposits from the engines operated with landfill gas. In general, the silicon content from deposits found in facilities utilizing biogas from anaerobic digesters was lower than those operated with landfills gas. The difference was made up with higher phosphorus, sulfur and calcium content in the deposits from the engines operated with digester gas.

Suggested Citation

  • Surita, Sharon C. & Tansel, Berrin, 2015. "Preliminary investigation to characterize deposits forming during combustion of biogas from anaerobic digesters and landfills," Renewable Energy, Elsevier, vol. 80(C), pages 674-681.
  • Handle: RePEc:eee:renene:v:80:y:2015:i:c:p:674-681
    DOI: 10.1016/j.renene.2015.02.060
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001780
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.02.060?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chynoweth, David P & Owens, John M & Legrand, Robert, 2001. "Renewable methane from anaerobic digestion of biomass," Renewable Energy, Elsevier, vol. 22(1), pages 1-8.
    2. Aslani, Alireza & Wong, Kau-Fui V., 2014. "Analysis of renewable energy development to power generation in the United States," Renewable Energy, Elsevier, vol. 63(C), pages 153-161.
    3. Rasi, Saija & Lehtinen, Jenni & Rintala, Jukka, 2010. "Determination of organic silicon compounds in biogas from wastewater treatments plants, landfills, and co-digestion plants," Renewable Energy, Elsevier, vol. 35(12), pages 2666-2673.
    4. Turkin, A.A. & Dutka, M. & Vainchtein, D. & Gersen, S. & van Essen, V.M. & Visser, P. & Mokhov, A.V. & Levinsky, H.B. & De Hosson, J.Th.M., 2014. "Deposition of SiO2 nanoparticles in heat exchanger during combustion of biogas," Applied Energy, Elsevier, vol. 113(C), pages 1141-1148.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alarico Macor & Alberto Benato, 2020. "Regulated Emissions of Biogas Engines—On Site Experimental Measurements and Damage Assessment on Human Health," Energies, MDPI, vol. 13(5), pages 1-38, February.
    2. Gersen, Sander & Visser, Pieter & van Essen, Martijn & Brown, Martin & Lewis, Andy & Levinsky, Howard, 2019. "Impact of silica deposition on the performance of gas-fired domestic appliances caused by the combustion of siloxanes in the fuel," Renewable Energy, Elsevier, vol. 132(C), pages 575-586.
    3. Heydari, Ali & Askarzadeh, Alireza, 2016. "Optimization of a biomass-based photovoltaic power plant for an off-grid application subject to loss of power supply probability concept," Applied Energy, Elsevier, vol. 165(C), pages 601-611.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lerato Shikwambana & Boitumelo Mokgoja & Paidamwoyo Mhangara, 2022. "A Qualitative Assessment of the Trends, Distribution and Sources of Methane in South Africa," Sustainability, MDPI, vol. 14(6), pages 1-13, March.
    2. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    3. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    4. Di Corato, Luca & Moretto, Michele, 2011. "Investing in biogas: Timing, technological choice and the value of flexibility from input mix," Energy Economics, Elsevier, vol. 33(6), pages 1186-1193.
    5. Jingura, Raphael Muzondiwa & Musademba, Downmore & Kamusoko, Reckson, 2013. "A review of the state of biomass energy technologies in Zimbabwe," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 652-659.
    6. Costa, J.C. & Oliveira, J.V. & Alves, M.M., 2016. "Response surface design to study the influence of inoculum, particle size and inoculum to substrate ratio on the methane production from Ulex sp," Renewable Energy, Elsevier, vol. 96(PB), pages 1071-1077.
    7. Bamooeifard, Alireza, 2020. "Future studies in Iran development plans for wind power, a system dynamics modeling approach," Renewable Energy, Elsevier, vol. 162(C), pages 1054-1064.
    8. Calbry-Muzyka, Adelaide & Tarik, Mohamed & Gandiglio, Marta & Li, Jianrong & Foppiano, Debora & de Krom, Iris & Heikens, Dita & Ludwig, Christian & Biollaz, Serge, 2021. "Sampling, on-line and off-line measurement of organic silicon compounds at an industrial biogas-fed 175-kWe SOFC plant," Renewable Energy, Elsevier, vol. 177(C), pages 61-71.
    9. Uusitalo, V. & Soukka, R. & Horttanainen, M. & Niskanen, A. & Havukainen, J., 2013. "Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector," Renewable Energy, Elsevier, vol. 51(C), pages 132-140.
    10. Zhang, Yuyao & Kawasaki, Yu & Oshita, Kazuyuki & Takaoka, Masaki & Minami, Daisuke & Inoue, Go & Tanaka, Toshihiro, 2021. "Economic assessment of biogas purification systems for removal of both H2S and siloxane from biogas," Renewable Energy, Elsevier, vol. 168(C), pages 119-130.
    11. Francesca Nardin & Fabrizio Mazzetto, 2014. "Mapping of Biomass Fluxes: A Method for Optimizing Biogas-Refinery of Livestock Effluents," Sustainability, MDPI, vol. 6(9), pages 1-21, September.
    12. Zhang, Wei & Yang, Jun & Sheng, Pengfei & Li, Xuesong & Wang, Xingwu, 2014. "Potential cooperation in renewable energy between China and the United States of America," Energy Policy, Elsevier, vol. 75(C), pages 403-409.
    13. Eleni Iacovidou & Jonathan Busch & John N. Hahladakis & Helen Baxter & Kok Siew Ng & Ben M. J. Herbert, 2017. "A Parameter Selection Framework for Sustainability Assessment," Sustainability, MDPI, vol. 9(9), pages 1-18, August.
    14. Naja, Ghinwa M. & Alary, René & Bajeat, Philippe & Bellenfant, Gaël & Godon, Jean-Jacques & Jaeg, Jean-Philippe & Keck, Gérard & Lattes, Armand & Leroux, Carole & Modelon, Hugues & Moletta-Denat, Mari, 2011. "Assessment of biogas potential hazards," Renewable Energy, Elsevier, vol. 36(12), pages 3445-3451.
    15. Budzianowski, Wojciech M., 2016. "A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 1148-1171.
    16. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    17. Adeel ur Rehman & Bhajan Lal, 2022. "Gas Hydrate-Based CO 2 Capture: A Journey from Batch to Continuous," Energies, MDPI, vol. 15(21), pages 1-27, November.
    18. Mollahosseini, Arash & Hosseini, Seyed Amid & Jabbari, Mostafa & Figoli, Alberto & Rahimpour, Ahmad, 2017. "Renewable energy management and market in Iran: A holistic review on current state and future demands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 774-788.
    19. Frauke P. C. Müller & Gerd-Christian Maack & Wolfgang Buescher, 2017. "Effects of Biogas Substrate Recirculation on Methane Yield and Efficiency of a Liquid-Manure-Based Biogas Plant," Energies, MDPI, vol. 10(3), pages 1-11, March.
    20. Kaparaju, P. & Rintala, J., 2011. "Mitigation of greenhouse gas emissions by adopting anaerobic digestion technology on dairy, sow and pig farms in Finland," Renewable Energy, Elsevier, vol. 36(1), pages 31-41.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:80:y:2015:i:c:p:674-681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.