IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp381-387.html
   My bibliography  Save this article

Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor

Author

Listed:
  • Singh, M.A.
  • Biswas, A.
  • Misra, R.D.

Abstract

Energy is an essential ingredient for socio-economic development and economic growth of a country. Energy is available in two different forms, fast depleting or non-renewable (coal, fuel, natural gas) and renewable (solar, wind, hydro etc). Wind is one of the potential renewable energy sources due to its abundance in the atmosphere in different scales of high, medium and low ranges. Vertical axis wind turbine (VAWT) can be installed in low wind speed regime for performing various small-scale functions ranging from electrifying a built environment to pumping water especially in remote places where grid-connected electricity is a scarce. Amongst various VAWT rotors, H-type Darrieus rotor has become more popular in the built environment for their straight blade designs and simpler construction features. However, the major problem facing such VAWT rotor is their non-self-starting characteristics due to symmetrical blade designs. Replacing VAWT's conventional blades with unsymmetrical blades and increasing rotor solidity could make potential solution to the above problem. However, there is still hardly any quantitative measure of the self-starting, torque, power coefficient etc. with increased rotor solidity so as to obtain some performance insights of high solidity unsymmetrical blade H-Darrieus rotor in low wind speed condition. In this paper a three-bladed H-type Darrieus rotor equipped with unsymmetrical S1210 blades is investigated first for its self-starting characteristics with different rotor solidities (from 0.8 to 1.2) at various azimuthal positions. Then the power coefficients (Cp) are evaluated for these solidities at various wind speeds. It will be shown that high blade solidity is in fact desirable for overall better performance of the rotor. There is an optimum rotor solidity at which power coefficient is the highest. And the maximum Cp of 0.32 is obtained for rotor solidity 1.0 and wind speed 5.7 m/s. The results are compared with some other symmetrical/unsymmetrical blade H-Darrieus rotors. Though the operating range is reduced but, for higher static and dynamic torque and comparable power coefficient with respect to existing rotors, the present rotor could be used for various small-scale applications especially that require high torque like pumping, grinding etc.

Suggested Citation

  • Singh, M.A. & Biswas, A. & Misra, R.D., 2015. "Investigation of self-starting and high rotor solidity on the performance of a three S1210 blade H-type Darrieus rotor," Renewable Energy, Elsevier, vol. 76(C), pages 381-387.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:381-387
    DOI: 10.1016/j.renene.2014.11.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007423
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Howell, Robert & Qin, Ning & Edwards, Jonathan & Durrani, Naveed, 2010. "Wind tunnel and numerical study of a small vertical axis wind turbine," Renewable Energy, Elsevier, vol. 35(2), pages 412-422.
    2. Mohamed, M.H., 2012. "Performance investigation of H-rotor Darrieus turbine with new airfoil shapes," Energy, Elsevier, vol. 47(1), pages 522-530.
    3. Mohamed, M.H., 2013. "Impacts of solidity and hybrid system in small wind turbines performance," Energy, Elsevier, vol. 57(C), pages 495-504.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    2. Pedram Ghiasi & Gholamhassan Najafi & Barat Ghobadian & Ali Jafari & Mohamed Mazlan, 2022. "Analytical Study of the Impact of Solidity, Chord Length, Number of Blades, Aspect Ratio and Airfoil Type on H-Rotor Darrieus Wind Turbine Performance at Low Reynolds Number," Sustainability, MDPI, vol. 14(5), pages 1-14, February.
    3. Ihor Shchur & Volodymyr Klymko & Shengbai Xie & David Schmidt, 2023. "Design Features and Numerical Investigation of Counter-Rotating VAWT with Co-Axial Rotors Displaced from Each Other along the Axis of Rotation," Energies, MDPI, vol. 16(11), pages 1-24, June.
    4. Didane, Djamal Hissein & Rosly, Nurhayati & Zulkafli, Mohd Fadhli & Shamsudin, Syariful Syafiq, 2018. "Performance evaluation of a novel vertical axis wind turbine with coaxial contra-rotating concept," Renewable Energy, Elsevier, vol. 115(C), pages 353-361.
    5. Sengupta, A.R. & Biswas, A. & Gupta, R., 2016. "Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams," Renewable Energy, Elsevier, vol. 93(C), pages 536-547.
    6. Marinić-Kragić, Ivo & Vučina, Damir & Milas, Zoran, 2018. "Numerical workflow for 3D shape optimization and synthesis of vertical-axis wind turbines for specified operating regimes," Renewable Energy, Elsevier, vol. 115(C), pages 113-127.
    7. Liu, Kan & Yu, Meilin & Zhu, Weidong, 2019. "Enhancing wind energy harvesting performance of vertical axis wind turbines with a new hybrid design: A fluid-structure interaction study," Renewable Energy, Elsevier, vol. 140(C), pages 912-927.
    8. Zamani, Mahdi & Nazari, Saeed & Moshizi, Sajad A. & Maghrebi, Mohammad Javad, 2016. "Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine," Energy, Elsevier, vol. 116(P1), pages 1243-1255.
    9. Meana-Fernández, Andrés & Solís-Gallego, Irene & Fernández Oro, Jesús Manuel & Argüelles Díaz, Katia María & Velarde-Suárez, Sandra, 2018. "Parametrical evaluation of the aerodynamic performance of vertical axis wind turbines for the proposal of optimized designs," Energy, Elsevier, vol. 147(C), pages 504-517.
    10. Kumar, Rakesh & Raahemifar, Kaamran & Fung, Alan S., 2018. "A critical review of vertical axis wind turbines for urban applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 89(C), pages 281-291.
    11. Sengupta, A.R. & Biswas, A. & Gupta, R., 2019. "Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement," Renewable Energy, Elsevier, vol. 139(C), pages 1412-1427.
    12. Douak, M. & Aouachria, Z. & Rabehi, R. & Allam, N., 2018. "Wind energy systems: Analysis of the self-starting physics of vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1602-1610.
    13. Yosry, Ahmed Gharib & Álvarez, Eduardo Álvarez & Valdés, Rodolfo Espina & Pandal, Adrián & Marigorta, Eduardo Blanco, 2023. "Experimental and multiphase modeling of small vertical-axis hydrokinetic turbine with free-surface variations," Renewable Energy, Elsevier, vol. 203(C), pages 788-801.
    14. Zhen Liu & Hengliang Qu & Hongda Shi, 2016. "Numerical Study on Self-Starting Performance of Darrieus Vertical Axis Turbine for Tidal Stream Energy Conversion," Energies, MDPI, vol. 9(10), pages 1-15, September.
    15. Liu, Qingsong & Miao, Weipao & Ye, Qi & Li, Chun, 2022. "Performance assessment of an innovative Gurney flap for straight-bladed vertical axis wind turbine," Renewable Energy, Elsevier, vol. 185(C), pages 1124-1138.
    16. Aitor Fernández-Jiménez & Eduardo Álvarez-Álvarez & Mario López & Mateo Fouz & Iván López & Ahmed Gharib-Yosry & Rubén Claus & Rodrigo Carballo, 2021. "Power Performance Assessment of Vertical-Axis Tidal Turbines Using an Experimental Test Rig," Energies, MDPI, vol. 14(20), pages 1-12, October.
    17. Jafari, Mohammad & Razavi, Alireza & Mirhosseini, Mojtaba, 2018. "Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines," Energy, Elsevier, vol. 165(PA), pages 792-810.
    18. Guanghao Li & Guoying Wu & Lei Tan & Honggang Fan, 2023. "A Review: Design and Optimization Approaches of the Darrieus Water Turbine," Sustainability, MDPI, vol. 15(14), pages 1-28, July.
    19. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    20. Chen, Yaoran & Su, Jie & Han, Zhaolong & Zhao, Yongsheng & Zhou, Dai & Yang, He & Bao, Yan & Lei, Hang, 2020. "A shape optimization of ϕ-shape Darrieus wind turbine under a given range of inlet wind speed," Renewable Energy, Elsevier, vol. 159(C), pages 286-299.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Qingan & Cai, Chang & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Dong, Yehong & Zhang, Fanghong & Xu, Jianzhong, 2021. "Visualization of aerodynamic forces and flow field on a straight-bladed vertical axis wind turbine by wind tunnel experiments and panel method," Energy, Elsevier, vol. 225(C).
    2. Chen, Jian & Yang, Hongxing & Yang, Mo & Xu, Hongtao & Hu, Zuohuan, 2015. "A comprehensive review of the theoretical approaches for the airfoil design of lift-type vertical axis wind turbine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1709-1720.
    3. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Murata, Junsuke & Kawabata, Toshiaki & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2016. "Wind tunnel and numerical study of a straight-bladed vertical axis wind turbine in three-dimensional analysis (Part I: For predicting aerodynamic loads and performance)," Energy, Elsevier, vol. 106(C), pages 443-452.
    4. Tummala, Abhishiktha & Velamati, Ratna Kishore & Sinha, Dipankur Kumar & Indraja, V. & Krishna, V. Hari, 2016. "A review on small scale wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 1351-1371.
    5. Zhu, Haitian & Hao, Wenxing & Li, Chun & Ding, Qinwei & Wu, Baihui, 2018. "A critical study on passive flow control techniques for straight-bladed vertical axis wind turbine," Energy, Elsevier, vol. 165(PA), pages 12-25.
    6. Barnes, Andrew & Marshall-Cross, Daniel & Hughes, Ben Richard, 2021. "Towards a standard approach for future Vertical Axis Wind Turbine aerodynamics research and development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Sengupta, A.R. & Biswas, A. & Gupta, R., 2019. "Comparison of low wind speed aerodynamics of unsymmetrical blade H-Darrieus rotors-blade camber and curvature signatures for performance improvement," Renewable Energy, Elsevier, vol. 139(C), pages 1412-1427.
    8. Li, Qing'an & Maeda, Takao & Kamada, Yasunari & Shimizu, Kento & Ogasawara, Tatsuhiko & Nakai, Alisa & Kasuya, Takuji, 2017. "Effect of rotor aspect ratio and solidity on a straight-bladed vertical axis wind turbine in three-dimensional analysis by the panel method," Energy, Elsevier, vol. 121(C), pages 1-9.
    9. Almohammadi, K.M. & Ingham, D.B. & Ma, L. & Pourkashan, M., 2013. "Computational fluid dynamics (CFD) mesh independency techniques for a straight blade vertical axis wind turbine," Energy, Elsevier, vol. 58(C), pages 483-493.
    10. Kamal, Md. Mustafa & Saini, R.P., 2023. "Performance investigations of hybrid hydrokinetic turbine rotor with different system and operating parameters," Energy, Elsevier, vol. 267(C).
    11. Ramadan, A. & Mohamed, M.H. & Marzok, S.Y. & Montasser, O.A. & El Feky, A. & El Baz, A.R., 2014. "An artificial generation of a few specific wave conditions: New simulator design and experimental performance," Energy, Elsevier, vol. 69(C), pages 309-318.
    12. Jin, Xin & Zhao, Gaoyuan & Gao, KeJun & Ju, Wenbin, 2015. "Darrieus vertical axis wind turbine: Basic research methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 212-225.
    13. Mohamed, M.H., 2014. "Aero-acoustics noise evaluation of H-rotor Darrieus wind turbines," Energy, Elsevier, vol. 65(C), pages 596-604.
    14. Pierre Tchakoua & René Wamkeue & Mohand Ouhrouche & Tommy Andy Tameghe & Gabriel Ekemb, 2015. "A New Approach for Modeling Darrieus-Type Vertical Axis Wind Turbine Rotors Using Electrical Equivalent Circuit Analogy: Basis of Theoretical Formulations and Model Development," Energies, MDPI, vol. 8(10), pages 1-34, September.
    15. Ma, Ning & Lei, Hang & Han, Zhaolong & Zhou, Dai & Bao, Yan & Zhang, Kai & Zhou, Lei & Chen, Caiyong, 2018. "Airfoil optimization to improve power performance of a high-solidity vertical axis wind turbine at a moderate tip speed ratio," Energy, Elsevier, vol. 150(C), pages 236-252.
    16. Ghazalla, R.A. & Mohamed, M.H. & Hafiz, A.A., 2019. "Synergistic analysis of a Darrieus wind turbine using computational fluid dynamics," Energy, Elsevier, vol. 189(C).
    17. Han, Wanlong & Yan, Peigang & Han, Wanjin & He, Yurong, 2015. "Design of wind turbines with shroud and lobed ejectors for efficient utilization of low-grade wind energy," Energy, Elsevier, vol. 89(C), pages 687-701.
    18. Wong, Kok Hoe & Chong, Wen Tong & Poh, Sin Chew & Shiah, Yui-Chuin & Sukiman, Nazatul Liana & Wang, Chin-Tsan, 2018. "3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine," Renewable Energy, Elsevier, vol. 129(PA), pages 32-55.
    19. Kamal, Md. Mustafa & Saini, R.P., 2022. "A numerical investigation on the influence of savonius blade helicity on the performance characteristics of hybrid cross-flow hydrokinetic turbine," Renewable Energy, Elsevier, vol. 190(C), pages 788-804.
    20. Dessoky, Amgad & Bangga, Galih & Lutz, Thorsten & Krämer, Ewald, 2019. "Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology," Energy, Elsevier, vol. 175(C), pages 76-97.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:381-387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.