IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v76y2015icp338-361.html
   My bibliography  Save this article

Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence

Author

Listed:
  • Li, Y.
  • Castro, A.M.
  • Sinokrot, T.
  • Prescott, W.
  • Carrica, P.M.

Abstract

A high fidelity approach for wind turbine aero-elastic simulations including explicit representation of the atmospheric wind turbulence is presented. The approach uses a dynamic overset computational fluid dynamics (CFD) code for the aerodynamics coupled with a multi-body dynamics (MBD) code for the motion responses to the aerodynamic loads. Mann's wind turbulence model was implemented into the CFD code as boundary and initial conditions. The wind turbulence model was validated by comparing the theoretical one-point spectrum for the three components of the velocity fluctuations, and by comparing the expected statistics from the CFD simulated wind turbulent field with the explicit wind turbulence inlet boundary from Mann model. Extensive simulations based on the proposed coupled approach were conducted with the conceptual NREL 5-MW offshore wind turbine in an increasing level of complexity, analyzing the turbine behavior as elasticity, wind shear and atmospheric wind turbulence are added to the simulations. Results are compared with the publicly available simulations results from OC3 participants, showing good agreement for the aerodynamic loads and blade tip deflections in time and frequency domains. Wind turbulence/turbine interaction was examined for the wake flow. It was found that explicit turbulence addition results in considerably increased wake diffusion. The coupled CFD/MBD approach can be extended to include multibody models of the shaft, bearings, gearbox and generator, resulting in a promising tool for wind turbine design under complex operational environments.

Suggested Citation

  • Li, Y. & Castro, A.M. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2015. "Coupled multi-body dynamics and CFD for wind turbine simulation including explicit wind turbulence," Renewable Energy, Elsevier, vol. 76(C), pages 338-361.
  • Handle: RePEc:eee:renene:v:76:y:2015:i:c:p:338-361
    DOI: 10.1016/j.renene.2014.11.014
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114007290
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.11.014?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yuwei & Paik, Kwang-Jun & Xing, Tao & Carrica, Pablo M., 2012. "Dynamic overset CFD simulations of wind turbine aerodynamics," Renewable Energy, Elsevier, vol. 37(1), pages 285-298.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Della Posta, Giacomo & Leonardi, Stefano & Bernardini, Matteo, 2022. "A two-way coupling method for the study of aeroelastic effects in large wind turbines," Renewable Energy, Elsevier, vol. 190(C), pages 971-992.
    2. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2019. "Numerical Investigation of the Effect of Tower Dam and Rotor Misalignment on Performance and Loads of a Large Wind Turbine in the Atmospheric Boundary Layer," Energies, MDPI, vol. 12(7), pages 1-19, March.
    3. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    4. Pim van der Male & Marco Vergassola & Karel N. van Dalen, 2020. "Decoupled Modelling Approaches for Environmental Interactions with Monopile-Based Offshore Wind Support Structures," Energies, MDPI, vol. 13(19), pages 1-35, October.
    5. Wang, Lin & Liu, Xiongwei & Kolios, Athanasios, 2016. "State of the art in the aeroelasticity of wind turbine blades: Aeroelastic modelling," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 195-210.
    6. Gilberto Santo & Mathijs Peeters & Wim Van Paepegem & Joris Degroote, 2020. "Fluid–Structure Interaction Simulations of a Wind Gust Impacting on the Blades of a Large Horizontal Axis Wind Turbine," Energies, MDPI, vol. 13(3), pages 1-20, January.
    7. Ebrahimi, Abbas & Sekandari, Mahmood, 2018. "Transient response of the flexible blade of horizontal-axis wind turbines in wind gusts and rapid yaw changes," Energy, Elsevier, vol. 145(C), pages 261-275.
    8. Yang, An-Shik & Su, Ying-Ming & Wen, Chih-Yung & Juan, Yu-Hsuan & Wang, Wei-Siang & Cheng, Chiang-Ho, 2016. "Estimation of wind power generation in dense urban area," Applied Energy, Elsevier, vol. 171(C), pages 213-230.
    9. Xue, Zhanpu & Wang, Wei & Fang, Liqing & Zhou, Jingbo, 2020. "Numerical simulation on structural dynamics of 5 MW wind turbine," Renewable Energy, Elsevier, vol. 162(C), pages 222-233.
    10. Zhou, Yang & Xiao, Qing & Liu, Yuanchuan & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng & Pan, Guang & Li, Sunwei, 2022. "Exploring inflow wind condition on floating offshore wind turbine aerodynamic characterisation and platform motion prediction using blade resolved CFD simulation," Renewable Energy, Elsevier, vol. 182(C), pages 1060-1079.
    11. Zheng, Jiancai & Wang, Nina & Wan, Decheng & Strijhak, Sergei, 2023. "Numerical investigations of coupled aeroelastic performance of wind turbines by elastic actuator line model," Applied Energy, Elsevier, vol. 330(PB).
    12. Pablo Zambrana & Javier Fernandez-Quijano & J. Jesus Fernandez-Lozano & Pedro M. Mayorga Rubio & Alfonso J. Garcia-Cerezo, 2021. "Improving the Performance of Controllers for Wind Turbines on Semi-Submersible Offshore Platforms: Fuzzy Supervisor Control," Energies, MDPI, vol. 14(19), pages 1-17, September.
    13. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "A CFD study into the influence of unsteady aerodynamic interference on wind turbine surge motion," Renewable Energy, Elsevier, vol. 90(C), pages 204-228.
    14. Shafiqur Rehman & Md. Mahbub Alam & Luai M. Alhems & M. Mujahid Rafique, 2018. "Horizontal Axis Wind Turbine Blade Design Methodologies for Efficiency Enhancement—A Review," Energies, MDPI, vol. 11(3), pages 1-34, February.
    15. Tran, Thanh Toan & Kim, Dong-Hyun, 2016. "Fully coupled aero-hydrodynamic analysis of a semi-submersible FOWT using a dynamic fluid body interaction approach," Renewable Energy, Elsevier, vol. 92(C), pages 244-261.
    16. Wenyan Li & Yuxuan Xiong & Guoliang Su & Zuyang Ye & Guowu Wang & Zhao Chen, 2023. "The Aerodynamic Performance of Horizontal Axis Wind Turbines under Rotation Condition," Sustainability, MDPI, vol. 15(16), pages 1-15, August.
    17. Huang, Haoda & Liu, Qingsong & Yue, Minnan & Miao, Weipao & Wang, Peilin & Li, Chun, 2023. "Fully coupled aero-hydrodynamic analysis of a biomimetic fractal semi-submersible floating offshore wind turbine under wind-wave excitation conditions," Renewable Energy, Elsevier, vol. 203(C), pages 280-300.
    18. Zhanpu Xue & Hao Zhang & Yunguang Ji, 2023. "Dynamic Response of a Flexible Multi-Body in Large Wind Turbines: A Review," Sustainability, MDPI, vol. 15(8), pages 1-25, April.
    19. Li, Liang & Liu, Yuanchuan & Yuan, Zhiming & Gao, Yan, 2018. "Wind field effect on the power generation and aerodynamic performance of offshore floating wind turbines," Energy, Elsevier, vol. 157(C), pages 379-390.
    20. Li, Y. & Castro, A.M. & Martin, J.E. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2017. "Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics," Renewable Energy, Elsevier, vol. 101(C), pages 1037-1051.
    21. Cuadra, L. & Ocampo-Estrella, I. & Alexandre, E. & Salcedo-Sanz, S., 2019. "A study on the impact of easements in the deployment of wind farms near airport facilities," Renewable Energy, Elsevier, vol. 135(C), pages 566-588.
    22. Quallen, Sean & Xing, Tao, 2016. "CFD simulation of a floating offshore wind turbine system using a variable-speed generator-torque controller," Renewable Energy, Elsevier, vol. 97(C), pages 230-242.
    23. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    24. Kim, Yusik & Madsen, Helge Aa & Aparicio-Sanchez, Maria & Pirrung, Georg & Lutz, Thorsten, 2020. "Assessment of blade element momentum codes under varying turbulence levels by comparing with blade resolved computational fluid dynamics," Renewable Energy, Elsevier, vol. 160(C), pages 788-802.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    2. Youjin Kim & Galih Bangga & Antonio Delgado, 2020. "Investigations of HAWT Airfoil Shape Characteristics and 3D Rotational Augmentation Sensitivity Toward the Aerodynamic Performance Improvement," Sustainability, MDPI, vol. 12(18), pages 1-22, September.
    3. Liu, Yuanchuan & Xiao, Qing & Incecik, Atilla & Peyrard, Christophe & Wan, Decheng, 2017. "Establishing a fully coupled CFD analysis tool for floating offshore wind turbines," Renewable Energy, Elsevier, vol. 112(C), pages 280-301.
    4. Liu, Pengyin & Yu, Guohua & Zhu, Xiaocheng & Du, Zhaohui, 2014. "Unsteady aerodynamic prediction for dynamic stall of wind turbine airfoils with the reduced order modeling," Renewable Energy, Elsevier, vol. 69(C), pages 402-409.
    5. Amin Allah, Veisi & Shafiei Mayam, Mohammad Hossein, 2017. "Large Eddy Simulation of flow around a single and two in-line horizontal-axis wind turbines," Energy, Elsevier, vol. 121(C), pages 533-544.
    6. Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2017. "Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect," Energy, Elsevier, vol. 120(C), pages 518-536.
    7. Zhang, Dongqin & Liu, Zhenqing & Li, Weipeng & Hu, Gang, 2023. "LES simulation study of wind turbine aerodynamic characteristics with fluid-structure interaction analysis considering blade and tower flexibility," Energy, Elsevier, vol. 282(C).
    8. Veisi, Amin Allah & Shafiei Mayam, Mohammad Hossein, 2017. "Effects of blade rotation direction in the wake region of two in-line turbines using Large Eddy Simulation," Applied Energy, Elsevier, vol. 197(C), pages 375-392.
    9. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    10. Make, Michel & Vaz, Guilherme, 2015. "Analyzing scaling effects on offshore wind turbines using CFD," Renewable Energy, Elsevier, vol. 83(C), pages 1326-1340.
    11. Alkhabbaz, Ali & Yang, Ho-Seong & Weerakoon, A.H Samitha & Lee, Young-Ho, 2021. "A novel linearization approach of chord and twist angle distribution for 10 kW horizontal axis wind turbine," Renewable Energy, Elsevier, vol. 178(C), pages 1398-1420.
    12. Herp, Jürgen & Poulsen, Uffe V. & Greiner, Martin, 2015. "Wind farm power optimization including flow variability," Renewable Energy, Elsevier, vol. 81(C), pages 173-181.
    13. Quallen, Sean & Xing, Tao, 2016. "CFD simulation of a floating offshore wind turbine system using a variable-speed generator-torque controller," Renewable Energy, Elsevier, vol. 97(C), pages 230-242.
    14. Hailay Kiros Kelele & Torbjørn Kirstian Nielsen & Lars Froyd & Mulu Bayray Kahsay, 2020. "Catchment Based Aerodynamic Performance Analysis of Small Wind Turbine Using a Single Blade Concept for a Low Cost of Energy," Energies, MDPI, vol. 13(21), pages 1-20, November.
    15. Amiri, Mojtaba Maali & Shadman, Milad & Estefen, Segen F., 2020. "URANS simulations of a horizontal axis wind turbine under stall condition using Reynolds stress turbulence models," Energy, Elsevier, vol. 213(C).
    16. Lei, Hang & Zhou, Dai & Bao, Yan & Chen, Caiyong & Ma, Ning & Han, Zhaolong, 2017. "Numerical simulations of the unsteady aerodynamics of a floating vertical axis wind turbine in surge motion," Energy, Elsevier, vol. 127(C), pages 1-17.
    17. Ye, Maokun & Chen, Hamn-Ching & Koop, Arjen, 2023. "High-fidelity CFD simulations for the wake characteristics of the NTNU BT1 wind turbine," Energy, Elsevier, vol. 265(C).
    18. Lee, Kyoungsoo & Huque, Ziaul & Kommalapati, Raghava & Han, Sang-Eul, 2017. "Fluid-structure interaction analysis of NREL phase VI wind turbine: Aerodynamic force evaluation and structural analysis using FSI analysis," Renewable Energy, Elsevier, vol. 113(C), pages 512-531.
    19. Li, Y. & Castro, A.M. & Martin, J.E. & Sinokrot, T. & Prescott, W. & Carrica, P.M., 2017. "Coupled computational fluid dynamics/multibody dynamics method for wind turbine aero-servo-elastic simulation including drivetrain dynamics," Renewable Energy, Elsevier, vol. 101(C), pages 1037-1051.
    20. Shantanu Purohit & Ijaz Fazil Syed Ahmed Kabir & E. Y. K. Ng, 2021. "On the Accuracy of uRANS and LES-Based CFD Modeling Approaches for Rotor and Wake Aerodynamics of the (New) MEXICO Wind Turbine Rotor Phase-III," Energies, MDPI, vol. 14(16), pages 1-26, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:76:y:2015:i:c:p:338-361. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.