IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v74y2015icp718-726.html
   My bibliography  Save this article

A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns

Author

Listed:
  • Xia, Caichu
  • Zhou, Yu
  • Zhou, Shuwei
  • Zhang, Pingyang
  • Wang, Fei

Abstract

Temperature and pressure variations in compressed air energy storage (CAES) caverns are important factors that affect the overall performance of CAES systems. However, current air storage cavern models used in the thermodynamic analysis of CAES systems usually ignore the effect of heat exchange between cavern air and the surrounding environment and thus cannot accurately predict temperature and pressure variations. In this study, a diabatic analytical solution in a simple and unified form and that considers heat exchange is proposed for temperature and pressure variations in CAES caverns. The solution is derived on the basis of assumptions that the air density in the cavern can be represented by a constant average value and that the cavern wall temperature remains constant. The proposed solution is validated with the test data of the Huntorf plant trial test and the results calculated with other solutions. Moreover, the errors of the proposed solution caused by the assumptions are analyzed. Results show that in representative ranges, the errors have a significant positive correlation with the ratio of the injected to the initial cavern air mass and the difference between the injected air temperature and the initial air temperature. The errors also have an insignificant negative correlation with the rock thermal effusivity and the heat transfer coefficient. Finally, the condition under which the proposed solution is applicable with an error less than 20% is defined on the basis of the combination of the ratio of the injected to the initial cavern air mass and the difference between the injected air temperature and the initial air temperature. This simplified and unified solution can be a simple yet adequately accurate tool to be used in the thermodynamic analysis of CAES systems.

Suggested Citation

  • Xia, Caichu & Zhou, Yu & Zhou, Shuwei & Zhang, Pingyang & Wang, Fei, 2015. "A simplified and unified analytical solution for temperature and pressure variations in compressed air energy storage caverns," Renewable Energy, Elsevier, vol. 74(C), pages 718-726.
  • Handle: RePEc:eee:renene:v:74:y:2015:i:c:p:718-726
    DOI: 10.1016/j.renene.2014.08.058
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400528X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.08.058?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Hyung-Mok & Rutqvist, Jonny & Ryu, Dong-Woo & Choi, Byung-Hee & Sunwoo, Choon & Song, Won-Kyong, 2012. "Exploring the concept of compressed air energy storage (CAES) in lined rock caverns at shallow depth: A modeling study of air tightness and energy balance," Applied Energy, Elsevier, vol. 92(C), pages 653-667.
    2. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of air storage chamber model on Advanced Adiabatic Compressed Air Energy Storage System," Renewable Energy, Elsevier, vol. 57(C), pages 469-478.
    3. Grazzini, Giuseppe & Milazzo, Adriano, 2008. "Thermodynamic analysis of CAES/TES systems for renewable energy plants," Renewable Energy, Elsevier, vol. 33(9), pages 1998-2006.
    4. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of thermal energy storage on compressed air energy storage system," Renewable Energy, Elsevier, vol. 50(C), pages 227-235.
    5. Hartmann, Niklas & Vöhringer, O. & Kruck, C. & Eltrop, L., 2012. "Simulation and analysis of different adiabatic Compressed Air Energy Storage plant configurations," Applied Energy, Elsevier, vol. 93(C), pages 541-548.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhan, Junpeng & Ansari, Osama Aslam & Liu, Weijia & Chung, C.Y., 2019. "An accurate bilinear cavern model for compressed air energy storage," Applied Energy, Elsevier, vol. 242(C), pages 752-768.
    2. Guney, Mukrimin Sevket & Tepe, Yalcin, 2017. "Classification and assessment of energy storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1187-1197.
    3. Alami, Abdul Hai & Aokal, Kamilia & Abed, Jehad & Alhemyari, Mohammad, 2017. "Low pressure, modular compressed air energy storage (CAES) system for wind energy storage applications," Renewable Energy, Elsevier, vol. 106(C), pages 201-211.
    4. Marcin Kopiczko & Jaroslaw Jaworski, 2021. "Characteristics of the Parameters of Lithium Iron Phosphate Energy Storage in the Context of their Usefulness in the Management of Distribution Grid," European Research Studies Journal, European Research Studies Journal, vol. 0(3B), pages 817-826.
    5. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    6. Krzysztof Polański, 2021. "Influence of the Variability of Compressed Air Temperature on Selected Parameters of the Deformation-Stress State of the Rock Mass Around a CAES Salt Cavern," Energies, MDPI, vol. 14(19), pages 1-28, September.
    7. Guo, Huan & Xu, Yujie & Huang, Lujing & Zhu, Yilin & Liang, Qi & Chen, Haisheng, 2022. "Concise analytical solution and optimization of compressed air energy storage systems with thermal storage," Energy, Elsevier, vol. 258(C).
    8. Briola, Stefano & Di Marco, Paolo & Gabbrielli, Roberto & Riccardi, Juri, 2016. "A novel mathematical model for the performance assessment of diabatic compressed air energy storage systems including the turbomachinery characteristic curves," Applied Energy, Elsevier, vol. 178(C), pages 758-772.
    9. Zhang, Xiong & Liu, Wei & Jiang, Deyi & Qiao, Weibiao & Liu, Enbin & Zhang, Nan & Fan, Jinyang, 2021. "Investigation on the influences of interlayer contents on stability and usability of energy storage caverns in bedded rock salt," Energy, Elsevier, vol. 231(C).
    10. Zhou, Yu & Xia, Caichu & Zhao, Haibin & Mei, Songhua & Zhou, Shuwei, 2018. "An iterative method for evaluating air leakage from unlined compressed air energy storage (CAES) caverns," Renewable Energy, Elsevier, vol. 120(C), pages 434-445.
    11. Liu, Xinyu & Yang, Jianping & Yang, Chunhe & Zhang, Zheyuan & Chen, Weizhong, 2023. "Numerical simulation on cavern support of compressed air energy storage(CAES)considering thermo-mechanical coupling effect," Energy, Elsevier, vol. 282(C).
    12. Zhang, Tianhang & Qin, Shusong & Wei, Guohua & Xie, Min & Peng, Yirui & Tang, Zhipei & Sun, Qiaoqun & Du, Qian & Feng, Dongdong & Gao, Jianmin & Li, Ximei & Zhang, Yu, 2023. "Thermodynamic analysis of a novel trans-critical compressed carbon dioxide energy storage system based on 13X zeolite temperature swing adsorption," Energy, Elsevier, vol. 282(C).
    13. Olabi, A.G. & Onumaegbu, C. & Wilberforce, Tabbi & Ramadan, Mohamad & Abdelkareem, Mohammad Ali & Al – Alami, Abdul Hai, 2021. "Critical review of energy storage systems," Energy, Elsevier, vol. 214(C).
    14. Zhao, Pan & Gao, Lin & Wang, Jiangfeng & Dai, Yiping, 2016. "Energy efficiency analysis and off-design analysis of two different discharge modes for compressed air energy storage system using axial turbines," Renewable Energy, Elsevier, vol. 85(C), pages 1164-1177.
    15. Guo, Juncheng & Cai, Ling & Chen, Jincan & Zhou, Yinghui, 2016. "Performance evaluation and parametric choice criteria of a Brayton pumped thermal electricity storage system," Energy, Elsevier, vol. 113(C), pages 693-701.
    16. Hossein Safaei & Michael J. Aziz, 2017. "Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled," Energies, MDPI, vol. 10(7), pages 1-31, July.
    17. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    18. Wu, Di & Wang, J.G. & Hu, Bowen & Yang, Sheng-Qi, 2020. "A coupled thermo-hydro-mechanical model for evaluating air leakage from an unlined compressed air energy storage cavern," Renewable Energy, Elsevier, vol. 146(C), pages 907-920.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Qian & Du, Dongmei & Lu, Chang & He, Qing & Liu, Wenyi, 2019. "A review of thermal energy storage in compressed air energy storage system," Energy, Elsevier, vol. 188(C).
    2. Sciacovelli, Adriano & Li, Yongliang & Chen, Haisheng & Wu, Yuting & Wang, Jihong & Garvey, Seamus & Ding, Yulong, 2017. "Dynamic simulation of Adiabatic Compressed Air Energy Storage (A-CAES) plant with integrated thermal storage – Link between components performance and plant performance," Applied Energy, Elsevier, vol. 185(P1), pages 16-28.
    3. Hossein Safaei & Michael J. Aziz, 2017. "Thermodynamic Analysis of Three Compressed Air Energy Storage Systems: Conventional, Adiabatic, and Hydrogen-Fueled," Energies, MDPI, vol. 10(7), pages 1-31, July.
    4. Roos, P. & Haselbacher, A., 2022. "Analytical modeling of advanced adiabatic compressed air energy storage: Literature review and new models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    5. Li, Peng & Hu, Qingya & Han, Zhonghe & Wang, Changxin & Wang, Runxia & Han, Xu & Wang, Yongzhen, 2022. "Thermodynamic analysis and multi-objective optimization of a trigenerative system based on compressed air energy storage under different working media and heating storage media," Energy, Elsevier, vol. 239(PD).
    6. Guo, Huan & Xu, Yujie & Chen, Haisheng & Guo, Cong & Qin, Wei, 2017. "Thermodynamic analytical solution and exergy analysis for supercritical compressed air energy storage system," Applied Energy, Elsevier, vol. 199(C), pages 96-106.
    7. Liu, Jin-Long & Wang, Jian-Hua, 2015. "Thermodynamic analysis of a novel tri-generation system based on compressed air energy storage and pneumatic motor," Energy, Elsevier, vol. 91(C), pages 420-429.
    8. Guo, Cong & Xu, Yujie & Zhang, Xinjing & Guo, Huan & Zhou, Xuezhi & Liu, Chang & Qin, Wei & Li, Wen & Dou, Binlin & Chen, Haisheng, 2017. "Performance analysis of compressed air energy storage systems considering dynamic characteristics of compressed air storage," Energy, Elsevier, vol. 135(C), pages 876-888.
    9. Jannelli, E. & Minutillo, M. & Lubrano Lavadera, A. & Falcucci, G., 2014. "A small-scale CAES (compressed air energy storage) system for stand-alone renewable energy power plant for a radio base station: A sizing-design methodology," Energy, Elsevier, vol. 78(C), pages 313-322.
    10. Ruixiong Li & Huanran Wang & Erren Yao & Shuyu Zhang, 2016. "Thermo-Economic Comparison and Parametric Optimizations among Two Compressed Air Energy Storage System Based on Kalina Cycle and ORC," Energies, MDPI, vol. 10(1), pages 1-19, December.
    11. Zhang, Yi & Xu, Yujie & Guo, Huan & Zhang, Xinjing & Guo, Cong & Chen, Haisheng, 2018. "A hybrid energy storage system with optimized operating strategy for mitigating wind power fluctuations," Renewable Energy, Elsevier, vol. 125(C), pages 121-132.
    12. Facci, Andrea L. & Sánchez, David & Jannelli, Elio & Ubertini, Stefano, 2015. "Trigenerative micro compressed air energy storage: Concept and thermodynamic assessment," Applied Energy, Elsevier, vol. 158(C), pages 243-254.
    13. Zhang, Yuan & Yang, Ke & Hong, Hui & Zhong, Xiaohui & Xu, Jianzhong, 2016. "Thermodynamic analysis of a novel energy storage system with carbon dioxide as working fluid," Renewable Energy, Elsevier, vol. 99(C), pages 682-697.
    14. Rouindej, Kamyar & Samadani, Ehsan & Fraser, Roydon A., 2020. "A comprehensive data-driven study of electrical power grid and its implications for the design, performance, and operational requirements of adiabatic compressed air energy storage systems," Applied Energy, Elsevier, vol. 257(C).
    15. Sheng, L. & Zhou, Z. & Charpentier, J.F. & Benbouzid, M.E.H., 2017. "Stand-alone island daily power management using a tidal turbine farm and an ocean compressed air energy storage system," Renewable Energy, Elsevier, vol. 103(C), pages 286-294.
    16. Guo, Hao & Gong, Maoqiong & Sun, Hailiang, 2021. "Performance analysis of a novel energy storage system based on the combination of positive and reverse organic Rankine cycles," Energy, Elsevier, vol. 231(C).
    17. Bi, Xianyun & Liu, Pei & Li, Zheng, 2016. "Thermo-dynamic analysis and simulation of a combined air and hydro energy storage (CAHES) system," Energy, Elsevier, vol. 116(P2), pages 1385-1396.
    18. Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Perroit, Quentin & Davies, Simon & Revellin, Rémi, 2020. "Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application," Applied Energy, Elsevier, vol. 260(C).
    19. Guo, Huan & Xu, Yujie & Kang, Haoyuan & Guo, Wenbing & Liu, Yu & Zhang, Xinjing & Zhou, Xuezhi & Chen, Haisheng, 2023. "From theory to practice: Evaluating the thermodynamic design landscape of compressed air energy storage systems," Applied Energy, Elsevier, vol. 352(C).
    20. Wu, Danman & Bai, Jiayu & Wei, Wei & Chen, Laijun & Mei, Shengwei, 2021. "Optimal bidding and scheduling of AA-CAES based energy hub considering cascaded consumption of heat," Energy, Elsevier, vol. 233(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:74:y:2015:i:c:p:718-726. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.