IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v66y2014icp670-679.html
   My bibliography  Save this article

Spatial and temporal characteristics of wind and wind power off the coasts of Brittany

Author

Listed:
  • Bentamy, Abderrahim
  • Croize-Fillon, Denis

Abstract

The main objective of this paper is to thoroughly examine the remotely sensed wind characteristics around the coasts of Brittany as well as some more specific areas. The offshore wind power potential is then assessed. To achieve this objective, information on wind speed and direction with sufficient spatial and temporal sampling under all weather conditions and during day and night is required. This study uses more than 12 years (December 1999–December 2012) of consistent remotely sensed data retrieved from the ASCAT and QuikSCAT scatterometers to estimate the conventional moments and associated wind distribution parameters. The latter are comparable to wind observations from meteorological stations. Furthermore, combining in-situ and scatterometer wind information enables an improved assessment of the spatial and temporal wind structures at specific locations of interest to be made. The wind statistical results are used to study the spatial and temporal patterns of the wind power. Although the main parameters characterizing wind power potential such as mean, variability, maximum energy, wind speed and intra-annual exhibit seasonal features, significant inter-annual variability is also depicted. Furthermore, differences are found between the wind power estimated for northern and for southern Brittany.

Suggested Citation

  • Bentamy, Abderrahim & Croize-Fillon, Denis, 2014. "Spatial and temporal characteristics of wind and wind power off the coasts of Brittany," Renewable Energy, Elsevier, vol. 66(C), pages 670-679.
  • Handle: RePEc:eee:renene:v:66:y:2014:i:c:p:670-679
    DOI: 10.1016/j.renene.2014.01.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400041X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.01.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pimenta, Felipe & Kempton, Willett & Garvine, Richard, 2008. "Combining meteorological stations and satellite data to evaluate the offshore wind power resource of Southeastern Brazil," Renewable Energy, Elsevier, vol. 33(11), pages 2375-2387.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.
    2. Díaz, H. & Guedes Soares, C., 2022. "A novel multi-criteria decision-making model to evaluate floating wind farm locations," Renewable Energy, Elsevier, vol. 185(C), pages 431-454.
    3. Chen, Xinping & Foley, Aoife & Zhang, Zenghai & Wang, Kaimin & O'Driscoll, Kieran, 2020. "An assessment of wind energy potential in the Beibu Gulf considering the energy demands of the Beibu Gulf Economic Rim," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    4. Croonenbroeck, Carsten & Ambach, Daniel, 2015. "Censored spatial wind power prediction with random effects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 613-622.
    5. Díaz, H. & Guedes Soares, C., 2020. "An integrated GIS approach for site selection of floating offshore wind farms in the Atlantic continental European coastline," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    6. Daniel Ambach & Robert Garthoff, 2016. "Vorhersagen der Windgeschwindigkeit und Windenergie in Deutschland [Predictions of wind speed and wind energy in Germany]," AStA Wirtschafts- und Sozialstatistisches Archiv, Springer;Deutsche Statistische Gesellschaft - German Statistical Society, vol. 10(1), pages 15-36, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, M.R. & Saidur, R. & Rahim, N.A., 2011. "Assessment of wind energy potentiality at Kudat and Labuan, Malaysia using Weibull distribution function," Energy, Elsevier, vol. 36(2), pages 985-992.
    2. Dhunny, A.Z. & Timmons, D.S. & Allam, Z. & Lollchund, M.R. & Cunden, T.S.M., 2020. "An economic assessment of near-shore wind farm development using a weather research forecast-based genetic algorithm model," Energy, Elsevier, vol. 201(C).
    3. Lima, Danielle K.S. & Leão, Ruth P.S. & dos Santos, Antônio C.S. & de Melo, Francisca D.C. & Couto, Vinícius M. & de Noronha, Aurélio W.T. & Oliveira, Demercil S., 2015. "Estimating the offshore wind resources of the State of Ceará in Brazil," Renewable Energy, Elsevier, vol. 83(C), pages 203-221.
    4. Cheng-Dar Yue & Che-Chih Liu & Chien-Cheng Tu & Ta-Hui Lin, 2019. "Prediction of Power Generation by Offshore Wind Farms Using Multiple Data Sources," Energies, MDPI, vol. 12(4), pages 1-24, February.
    5. César Henrique Mattos Pires & Felipe M. Pimenta & Carla A. D'Aquino & Osvaldo R. Saavedra & Xuerui Mao & Arcilan T. Assireu, 2020. "Coastal Wind Power in Southern Santa Catarina, Brazil," Energies, MDPI, vol. 13(19), pages 1-23, October.
    6. El Alimi, Souheil & Maatallah, Taher & Dahmouni, Anouar Wajdi & Ben Nasrallah, Sassi, 2012. "Modeling and investigation of the wind resource in the gulf of Tunis, Tunisia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5466-5478.
    7. Gallagher, Sarah & Tiron, Roxana & Whelan, Eoin & Gleeson, Emily & Dias, Frédéric & McGrath, Ray, 2016. "The nearshore wind and wave energy potential of Ireland: A high resolution assessment of availability and accessibility," Renewable Energy, Elsevier, vol. 88(C), pages 494-516.
    8. Omrani, Hiba & Drobinski, Philippe & Arsouze, Thomas & Bastin, Sophie & Lebeaupin-Brossier, Cindy & Mailler, Sylvain, 2017. "Spatial and temporal variability of wind energy resource and production over the North Western Mediterranean Sea: Sensitivity to air-sea interactions," Renewable Energy, Elsevier, vol. 101(C), pages 680-689.
    9. González-Alonso de Linaje, N. & Mattar, C. & Borvarán, D., 2019. "Quantifying the wind energy potential differences using different WRF initial conditions on Mediterranean coast of Chile," Energy, Elsevier, vol. 188(C).
    10. Dvorak, Michael J. & Archer, Cristina L. & Jacobson, Mark Z., 2010. "California offshore wind energy potential," Renewable Energy, Elsevier, vol. 35(6), pages 1244-1254.
    11. Jiang, Dong & Zhuang, Dafang & Huang, Yaohuan & Wang, Jianhua & Fu, Jingying, 2013. "Evaluating the spatio-temporal variation of China's offshore wind resources based on remotely sensed wind field data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 142-148.
    12. Lashin, Aref & Shata, Ahmed, 2012. "An analysis of wind power potential in Port Said, Egypt," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6660-6667.
    13. Sheridan, Blaise & Baker, Scott D. & Pearre, Nathaniel S. & Firestone, Jeremy & Kempton, Willett, 2012. "Calculating the offshore wind power resource: Robust assessment methods applied to the U.S. Atlantic Coast," Renewable Energy, Elsevier, vol. 43(C), pages 224-233.
    14. Tiny Remmers & Fiona Cawkwell & Cian Desmond & Jimmy Murphy & Eirini Politi, 2019. "The Potential of Advanced Scatterometer (ASCAT) 12.5 km Coastal Observations for Offshore Wind Farm Site Selection in Irish Waters," Energies, MDPI, vol. 12(2), pages 1-16, January.
    15. Sant’Anna de Sousa Gomes, Mateus & Faulstich de Paiva, Jane Maria & Aparecida da Silva Moris, Virgínia & Nunes, Andréa Oliveira, 2019. "Proposal of a methodology to use offshore wind energy on the southeast coast of Brazil," Energy, Elsevier, vol. 185(C), pages 327-336.
    16. Juárez, Alberto Aquino & Araújo, Alex Maurício & Rohatgi, Janardan Singh & de Oliveira Filho, Oyama Douglas Queiroz, 2014. "Development of the wind power in Brazil: Political, social and technical issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 828-834.
    17. Nagababu, Garlapati & Kachhwaha, Surendra Singh & Savsani, Vimal, 2017. "Estimation of technical and economic potential of offshore wind along the coast of India," Energy, Elsevier, vol. 138(C), pages 79-91.
    18. Rusu, Eugen & Onea, Florin, 2013. "Evaluation of the wind and wave energy along the Caspian Sea," Energy, Elsevier, vol. 50(C), pages 1-14.
    19. Arcilan T. Assireu & Felipe M. Pimenta & Ramon M. de Freitas & Osvaldo R. Saavedra & Francisco L. A. Neto & Audálio R. Torres Júnior & Clóvis B. M. Oliveira & Denivaldo C. P. Lopes & Shigeaki L. de Li, 2022. "EOSOLAR Project: Assessment of Wind Resources of a Coastal Equatorial Region of Brazil—Overview and Preliminary Results," Energies, MDPI, vol. 15(7), pages 1-22, March.
    20. Sarah Croake & Su Liu, "undated". "A Government Performance and Results Act (GPRA) Report: The Status of the Medicaid Infrastructure Grants Program as of 12/31/08," Mathematica Policy Research Reports 6430f9cc39fe41979569c5a14, Mathematica Policy Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:66:y:2014:i:c:p:670-679. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.