IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v54y2013icp196-200.html
   My bibliography  Save this article

Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration

Author

Listed:
  • Lee, Ji Ye
  • Kim, Young Soo
  • Um, Byung Hwan
  • Oh, KyeongKeun

Abstract

The conversion of cellulose hydrolysis was investigated in batch reactors from brown macro-algae under extremely low acid (ELA) pretreatment conditions. The brown macro-algae of Laminaria japonica were conducted for increasing glucan content as an aqua-biomass feedstock. The investigated ELA pretreatment conditions in this study were as follows; the reaction temperature of 150–180 °C, the reaction time of 5–20 min, and sulfuric acid concentrations of 0.02–0.14%. The maximum glucan content of 29.09%, which was four-fold higher than that of the raw L. japonica was obtained after the ELA pretreatment under the optimal condition with sulfuric acid of 0.06% at the temperature of 170 °C for 15 min. In addition, glucan content in solid residue, solid remaining, and the amount of decomposed products in hydrolyzate through ELA pretreatment of L. japonica were compared with those of hot water treatment. Significant enhancement on glucan fraction and enzymatic digestibility of the pretreated L. japonica could be achieved through the ELA pretreatment.

Suggested Citation

  • Lee, Ji Ye & Kim, Young Soo & Um, Byung Hwan & Oh, KyeongKeun, 2013. "Pretreatment of Laminaria japonica for bioethanol production with extremely low acid concentration," Renewable Energy, Elsevier, vol. 54(C), pages 196-200.
  • Handle: RePEc:eee:renene:v:54:y:2013:i:c:p:196-200
    DOI: 10.1016/j.renene.2012.08.025
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004958
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.025?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    2. Subhadra, Bobban & Edwards, Mark, 2010. "An integrated renewable energy park approach for algal biofuel production in United States," Energy Policy, Elsevier, vol. 38(9), pages 4897-4902, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Zhen & Li, Longfei & Liu, Cheng & Xu, Airong, 2017. "Saccharification of cellulose in the ionic liquids and glucose recovery," Renewable Energy, Elsevier, vol. 106(C), pages 99-102.
    2. Kazemi Shariat Panahi, Hamed & Dehhaghi, Mona & Aghbashlo, Mortaza & Karimi, Keikhosro & Tabatabaei, Meisam, 2019. "Shifting fuel feedstock from oil wells to sea: Iran outlook and potential for biofuel production from brown macroalgae (ochrophyta; phaeophyceae)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 626-642.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jambo, Siti Azmah & Abdulla, Rahmath & Mohd Azhar, Siti Hajar & Marbawi, Hartinie & Gansau, Jualang Azlan & Ravindra, Pogaku, 2016. "A review on third generation bioethanol feedstock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 756-769.
    2. Kandaramath Hari, Thushara & Yaakob, Zahira & Binitha, Narayanan N., 2015. "Aviation biofuel from renewable resources: Routes, opportunities and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1234-1244.
    3. Kasivisvanathan, Harresh & Barilea, Ivan Dale U. & Ng, Denny K.S. & Tan, Raymond R., 2013. "Optimal operational adjustment in multi-functional energy systems in response to process inoperability," Applied Energy, Elsevier, vol. 102(C), pages 492-500.
    4. Lean, Hooi Hooi & Smyth, Russell, 2013. "Are fluctuations in US production of renewable energy permanent or transitory?," Applied Energy, Elsevier, vol. 101(C), pages 483-488.
    5. Prajapati, Sanjeev Kumar & Malik, Anushree & Vijay, Virendra Kumar, 2014. "Comparative evaluation of biomass production and bioenergy generation potential of Chlorella spp. through anaerobic digestion," Applied Energy, Elsevier, vol. 114(C), pages 790-797.
    6. Shahnazari, Mahdi & Bahri, Parisa A. & Parlevliet, David & Minakshi, Manickam & Moheimani, Navid R., 2017. "Sustainable conversion of light to algal biomass and electricity: A net energy return analysis," Energy, Elsevier, vol. 131(C), pages 218-229.
    7. Milano, Jassinnee & Ong, Hwai Chyuan & Masjuki, H.H. & Chong, W.T. & Lam, Man Kee & Loh, Ping Kwan & Vellayan, Viknes, 2016. "Microalgae biofuels as an alternative to fossil fuel for power generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 180-197.
    8. Singh, Anoop & Olsen, Stig Irving, 2011. "A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels," Applied Energy, Elsevier, vol. 88(10), pages 3548-3555.
    9. Bai, Xue & Lant, Paul A. & Jensen, Paul D. & Astals, Sergi & Pratt, Steven, 2016. "Enhanced methane production from algal digestion using free nitrous acid pre-treatment," Renewable Energy, Elsevier, vol. 88(C), pages 383-390.
    10. Ozturk, Munir & Saba, Naheed & Altay, Volkan & Iqbal, Rizwan & Hakeem, Khalid Rehman & Jawaid, Mohammad & Ibrahim, Faridah Hanum, 2017. "Biomass and bioenergy: An overview of the development potential in Turkey and Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1285-1302.
    11. Montingelli, Maria E. & Benyounis, Khaled Y. & Quilty, Brid & Stokes, Joseph & Olabi, Abdul G., 2016. "Optimisation of biogas production from the macroalgae Laminaria sp. at different periods of harvesting in Ireland," Applied Energy, Elsevier, vol. 177(C), pages 671-682.
    12. Zabed, Hossain M. & Akter, Suely & Yun, Junhua & Zhang, Guoyan & Zhang, Yufei & Qi, Xianghui, 2020. "Biogas from microalgae: Technologies, challenges and opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    13. Rezk, Hegazy & Inayat, Abrar & Abdelkareem, Mohammad A. & Olabi, Abdul G. & Nassef, Ahmed M., 2022. "Optimal operating parameter determination based on fuzzy logic modeling and marine predators algorithm approaches to improve the methane production via biomass gasification," Energy, Elsevier, vol. 239(PB).
    14. Taylor, Benjamin & Xiao, Ning & Sikorski, Janusz & Yong, Minloon & Harris, Tom & Helme, Tim & Smallbone, Andrew & Bhave, Amit & Kraft, Markus, 2013. "Techno-economic assessment of carbon-negative algal biodiesel for transport solutions," Applied Energy, Elsevier, vol. 106(C), pages 262-274.
    15. Yeh, Naichia & Yeh, Pulin & Shih, Naichien & Byadgi, Omkar & Chih Cheng, Ta, 2014. "Applications of light-emitting diodes in researches conducted in aquatic environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 611-618.
    16. Wieczorek, Nils & Kucuker, Mehmet Ali & Kuchta, Kerstin, 2014. "Fermentative hydrogen and methane production from microalgal biomass (Chlorella vulgaris) in a two-stage combined process," Applied Energy, Elsevier, vol. 132(C), pages 108-117.
    17. Masri, Mahmoud A. & Jurkowski, Wojciech & Shaigani, Pariya & Haack, Martina & Mehlmer, Norbert & Brück, Thomas, 2018. "A waste-free, microbial oil centered cyclic bio-refinery approach based on flexible macroalgae biomass," Applied Energy, Elsevier, vol. 224(C), pages 1-12.
    18. Cabanelas, Iago Teles Dominguez & Arbib, Zouhayr & Chinalia, Fábio A. & Souza, Carolina Oliveira & Perales, José A. & Almeida, Paulo Fernando & Druzian, Janice Izabel & Nascimento, Iracema Andrade, 2013. "From waste to energy: Microalgae production in wastewater and glycerol," Applied Energy, Elsevier, vol. 109(C), pages 283-290.
    19. de Queiroz Fernandes Araújo, Ofélia & Luiz de Medeiros, José & Yokoyama, Lídia & do Rosário Vaz Morgado, Cláudia, 2015. "Metrics for sustainability analysis of post-combustion abatement of CO2 emissions: Microalgae mediated routes and CCS (carbon capture and storage)," Energy, Elsevier, vol. 92(P3), pages 556-568.
    20. Ajeej, Amritha & Thanikal, Joseph V & Narayanan, C M & Senthil Kumar, R., 2015. "An overview of bio augmentation of methane by anaerobic co-digestion of municipal sludge along with microalgae and waste paper," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 270-276.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:54:y:2013:i:c:p:196-200. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.