IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v54y2013icp166-172.html
   My bibliography  Save this article

Developement and verification of a performance based optimal design software for wind turbine blades

Author

Listed:
  • Kim, Bumsuk
  • Kim, Woojune
  • Lee, Sanglae
  • Bae, Sungyoul
  • Lee, Youngho

Abstract

In this research, we developed software for designing the optimum shape of multi-MW wind turbine blades and analyzing the performance, and it features aerodynamic shape design, performance analysis, pitch–torque analysis and shape optimization for wind turbine blades. In order to verify the accuracy of the performance analysis results of the software developed in this research, we chose the 5 MW blade, designed by NREL, as the comparison model and compared with the analysis results of well known commercial software (GH-Bladed). The calculated performance analysis results of GH-Bladed and our software were consistent in all values of CP in all λ ranges. Also, to confirm applicability of the optimum design module, the optimum design of the new 5 MW blade was performed using the initial design data of the comparison model and found that solidity was smaller in our design even though it produced the same output and efficiency. Through optimization of blade design, efficiency increased by 1% while the thrust coefficient decreased by 7.5%.

Suggested Citation

  • Kim, Bumsuk & Kim, Woojune & Lee, Sanglae & Bae, Sungyoul & Lee, Youngho, 2013. "Developement and verification of a performance based optimal design software for wind turbine blades," Renewable Energy, Elsevier, vol. 54(C), pages 166-172.
  • Handle: RePEc:eee:renene:v:54:y:2013:i:c:p:166-172
    DOI: 10.1016/j.renene.2012.08.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004995
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maalawi, Karam Y. & Badawy, Mahdy T. S., 2001. "A direct method for evaluating performance of horizontal axis wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 5(2), pages 175-190, June.
    2. Lanzafame, R. & Messina, M., 2007. "Fluid dynamics wind turbine design: Critical analysis, optimization and application of BEM theory," Renewable Energy, Elsevier, vol. 32(14), pages 2291-2305.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tahani, Mojtaba & Kavari, Ghazale & Masdari, Mehran & Mirhosseini, Mojtaba, 2017. "Aerodynamic design of horizontal axis wind turbine with innovative local linearization of chord and twist distributions," Energy, Elsevier, vol. 131(C), pages 78-91.
    2. Zhiqiang Yang & Minghui Yin & Yan Xu & Zhengyang Zhang & Yun Zou & Zhao Yang Dong, 2016. "A Multi-Point Method Considering the Maximum Power Point Tracking Dynamic Process for Aerodynamic Optimization of Variable-Speed Wind Turbine Blades," Energies, MDPI, vol. 9(6), pages 1-16, May.
    3. Tjiu, Willy & Marnoto, Tjukup & Mat, Sohif & Ruslan, Mohd Hafidz & Sopian, Kamaruzzaman, 2015. "Darrieus vertical axis wind turbine for power generation II: Challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development," Renewable Energy, Elsevier, vol. 75(C), pages 560-571.
    4. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    5. Yan, Jie & Nuertayi, Akejiang & Yan, Yamin & Liu, Shan & Liu, Yongqian, 2023. "Hybrid physical and data driven modeling for dynamic operation characteristic simulation of wind turbine," Renewable Energy, Elsevier, vol. 215(C).
    6. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    7. Jie Zhu & Xin Cai & Rongrong Gu, 2016. "Aerodynamic and Structural Integrated Optimization Design of Horizontal-Axis Wind Turbine Blades," Energies, MDPI, vol. 9(2), pages 1-18, January.
    8. Nikolić, Vlastimir & Sajjadi, Shahin & Petković, Dalibor & Shamshirband, Shahaboddin & Ćojbašić, Žarko & Por, Lip Yee, 2016. "Design and state of art of innovative wind turbine systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 258-265.
    9. Zhiqiang Yang & Minghui Yin & Yan Xu & Yun Zou & Zhao Yang Dong & Qian Zhou, 2016. "Inverse Aerodynamic Optimization Considering Impacts of Design Tip Speed Ratio for Variable-Speed Wind Turbines," Energies, MDPI, vol. 9(12), pages 1-15, December.
    10. Sang-Lae Lee & SangJoon Shin, 2020. "Wind Turbine Blade Optimal Design Considering Multi-Parameters and Response Surface Method," Energies, MDPI, vol. 13(7), pages 1-23, April.
    11. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    12. Guodong Yi & Huifang Zhou & Lemiao Qiu & Jundi Wu, 2020. "Geometry-Load Based Hybrid Correction Method for the Pre-Deformation Design of a Steam Turbine Blade," Energies, MDPI, vol. 13(10), pages 1-14, May.
    13. Du, Weikang & Zhao, Yongsheng & He, Yanping & Liu, Yadong, 2016. "Design, analysis and test of a model turbine blade for a wave basin test of floating wind turbines," Renewable Energy, Elsevier, vol. 97(C), pages 414-421.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lanzafame, R. & Messina, M., 2010. "Power curve control in micro wind turbine design," Energy, Elsevier, vol. 35(2), pages 556-561.
    2. Chehouri, Adam & Younes, Rafic & Ilinca, Adrian & Perron, Jean, 2015. "Review of performance optimization techniques applied to wind turbines," Applied Energy, Elsevier, vol. 142(C), pages 361-388.
    3. Mauro, S. & Lanzafame, R. & Messina, M. & Brusca, S., 2023. "On the importance of the root-to-hub adapter effects on HAWT performance: A CFD-BEM numerical investigation," Energy, Elsevier, vol. 275(C).
    4. Li, B. & Zhou, D.L. & Wang, Y. & Shuai, Y. & Liu, Q.Z. & Cai, W.H., 2020. "The design of a small lab-scale wind turbine model with high performance similarity to its utility-scale prototype," Renewable Energy, Elsevier, vol. 149(C), pages 435-444.
    5. Ikeda, Teruaki & Tanaka, Hiroto & Yoshimura, Ryosuke & Noda, Ryusuke & Fujii, Takeo & Liu, Hao, 2018. "A robust biomimetic blade design for micro wind turbines," Renewable Energy, Elsevier, vol. 125(C), pages 155-165.
    6. Imraan, Mustahib & Sharma, Rajnish N. & Flay, Richard G.J., 2013. "Wind tunnel testing of a wind turbine with telescopic blades: The influence of blade extension," Energy, Elsevier, vol. 53(C), pages 22-32.
    7. Shen, Xin & Chen, Jin-Ge & Zhu, Xiao-Cheng & Liu, Peng-Yin & Du, Zhao-Hui, 2015. "Multi-objective optimization of wind turbine blades using lifting surface method," Energy, Elsevier, vol. 90(P1), pages 1111-1121.
    8. Lanzafame, R. & Mauro, S. & Messina, M., 2013. "Wind turbine CFD modeling using a correlation-based transitional model," Renewable Energy, Elsevier, vol. 52(C), pages 31-39.
    9. Dallatu Abbas Umar & Chong Tak Yaw & Siaw Paw Koh & Sieh Kiong Tiong & Ammar Ahmed Alkahtani & Talal Yusaf, 2022. "Design and Optimization of a Small-Scale Horizontal Axis Wind Turbine Blade for Energy Harvesting at Low Wind Profile Areas," Energies, MDPI, vol. 15(9), pages 1-22, April.
    10. No, T.S. & Kim, J.-E. & Moon, J.H. & Kim, S.J., 2009. "Modeling, control, and simulation of dual rotor wind turbine generator system," Renewable Energy, Elsevier, vol. 34(10), pages 2124-2132.
    11. Syed Ahmed Kabir, Ijaz Fazil & Ng, E.Y.K., 2017. "Insight into stall delay and computation of 3D sectional aerofoil characteristics of NREL phase VI wind turbine using inverse BEM and improvement in BEM analysis accounting for stall delay effect," Energy, Elsevier, vol. 120(C), pages 518-536.
    12. Dai, J.C. & Hu, Y.P. & Liu, D.S. & Long, X., 2011. "Aerodynamic loads calculation and analysis for large scale wind turbine based on combining BEM modified theory with dynamic stall model," Renewable Energy, Elsevier, vol. 36(3), pages 1095-1104.
    13. Dai, Juchuan & Li, Mimi & Chen, Huanguo & He, Tao & Zhang, Fan, 2022. "Progress and challenges on blade load research of large-scale wind turbines," Renewable Energy, Elsevier, vol. 196(C), pages 482-496.
    14. Dai, Juchuan & Yang, Xin & Hu, Wei & Wen, Li & Tan, Yayi, 2018. "Effect investigation of yaw on wind turbine performance based on SCADA data," Energy, Elsevier, vol. 149(C), pages 684-696.
    15. Pan He & Jian Xia, 2022. "Study on the Influence of Low-Level Jet on the Aerodynamic Characteristics of Horizontal Axis Wind Turbine Rotor Based on the Aerodynamics–Controller Interaction Method," Energies, MDPI, vol. 15(8), pages 1-18, April.
    16. Thé, Jesse & Yu, Hesheng, 2017. "A critical review on the simulations of wind turbine aerodynamics focusing on hybrid RANS-LES methods," Energy, Elsevier, vol. 138(C), pages 257-289.
    17. Chi-Jeng Bai & Wei-Cheng Wang & Po-Wei Chen & Wen-Tong Chong, 2014. "System Integration of the Horizontal-Axis Wind Turbine: The Design of Turbine Blades with an Axial-Flux Permanent Magnet Generator," Energies, MDPI, vol. 7(11), pages 1-21, November.
    18. Tavares Dias do Rio Vaz, Déborah Aline & Vaz, Jerson Rogério Pinheiro & Mesquita, André Luiz Amarante & Pinho, João Tavares & Pinho Brasil Junior, Antonio Cesar, 2013. "Optimum aerodynamic design for wind turbine blade with a Rankine vortex wake," Renewable Energy, Elsevier, vol. 55(C), pages 296-304.
    19. Rajakumar, S. & Ravindran, D., 2012. "Iterative approach for optimising coefficient of power, coefficient of lift and drag of wind turbine rotor," Renewable Energy, Elsevier, vol. 38(1), pages 83-93.
    20. Han, Xingxing & Liu, Deyou & Xu, Chang & Shen, Wen Zhong, 2020. "Similarity functions and a new k−ε closure for predicting stratified atmospheric surface layer flows in complex terrain," Renewable Energy, Elsevier, vol. 150(C), pages 907-917.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:54:y:2013:i:c:p:166-172. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.