Effects of enzymatic hydrolysis on lipid extraction from Chlorella vulgaris
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2012.08.031
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- Marchetti, J.M. & Miguel, V.U. & Errazu, A.F., 2007. "Possible methods for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1300-1311, August.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
- Guo, Haipeng & Chen, Houming & Fan, Lu & Linklater, Andrew & Zheng, Bingsong & Jiang, Dean & Qin, Wensheng, 2017. "Enzymes produced by biomass-degrading bacteria can efficiently hydrolyze algal cell walls and facilitate lipid extraction," Renewable Energy, Elsevier, vol. 109(C), pages 195-201.
- Choi, Sun-A & Oh, You-Kwan & Jeong, Min-Ji & Kim, Seung Wook & Lee, Jin-Suk & Park, Ji-Yeon, 2014. "Effects of ionic liquid mixtures on lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 65(C), pages 169-174.
- Park, Ji-Yeon & Kim, Min-Cheol & Cheng, Jun & Yang, Weijuan & Kim, Deog-Keun, 2020. "Extraction of microalgal oil from Nannochloropsis oceanica by potassium hydroxide-assisted solvent extraction for heterogeneous transesterification," Renewable Energy, Elsevier, vol. 162(C), pages 2056-2065.
- Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
- Zhang, Yi & Kong, Xiaoying & Wang, Zhongming & Sun, Yongming & Zhu, Shunni & Li, Lianhua & Lv, Pengmei, 2018. "Optimization of enzymatic hydrolysis for effective lipid extraction from microalgae Scenedesmus sp," Renewable Energy, Elsevier, vol. 125(C), pages 1049-1057.
- Zhang, Yi & Kang, Xihui & Wang, Zhongming & Kong, Xiaoying & Li, Lianhua & Sun, Yongming & Zhu, Shunni & Feng, Siran & Luo, Xinjian & Lv, Pengmei, 2018. "Enhancement of the energy yield from microalgae via enzymatic pretreatment and anaerobic co-digestion," Energy, Elsevier, vol. 164(C), pages 400-407.
- Park, Ji-Yeon & Lee, Kyubock & Choi, Sun-A & Jeong, Min-Ji & Kim, Bohwa & Lee, Jin-Suk & Oh, You-Kwan, 2015. "Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 79(C), pages 3-8.
- Bruno Rafael de Almeida Moreira & Ronaldo da Silva Viana & Victor Hugo Cruz & Paulo Renato Matos Lopes & Celso Tadao Miasaki & Anderson Chagas Magalhães & Paulo Alexandre Monteiro de Figueiredo & Luca, 2020. "Anti-Thermal Shock Binding of Liquid-State Food Waste to Non-Wood Pellets," Energies, MDPI, vol. 13(12), pages 1-26, June.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Maceiras, Rocio & Rodrı´guez, Mónica & Cancela, Angeles & Urréjola, Santiago & Sánchez, Angel, 2011. "Macroalgae: Raw material for biodiesel production," Applied Energy, Elsevier, vol. 88(10), pages 3318-3323.
- Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat Teong & Khayoon, Muataz Sh., 2012. "Intensification of biodiesel production via ultrasonic-assisted process: A critical review on fundamentals and recent development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4574-4587.
- Ho, Sze-Hwee & Wong, Yiik-Diew & Chang, Victor Wei-Chung, 2014. "Evaluating the potential of biodiesel (via recycled cooking oil) use in Singapore, an urban city," Resources, Conservation & Recycling, Elsevier, vol. 91(C), pages 117-124.
- Md Modassir Khan & Arun Kumar Kadian & Rabindra Prasad Sharma & S M Mozammil Hasnain & Ahmed Mohamed & Adham E. Ragab & Ali Zare & Shatrudhan Pandey, 2023. "Emission Reduction and Performance Enhancement of CI Engine Propelled by Neem Biodiesel-Neem Oil-Decanol-Diesel Blends at High Injection Pressure," Sustainability, MDPI, vol. 15(11), pages 1-18, June.
- Jume, Binta Hadi & Gabris, Mohammad Ali & Rashidi Nodeh, Hamid & Rezania, Shahabaldin & Cho, Jinwoo, 2020. "Biodiesel production from waste cooking oil using a novel heterogeneous catalyst based on graphene oxide doped metal oxide nanoparticles," Renewable Energy, Elsevier, vol. 162(C), pages 2182-2189.
- Talebian-Kiakalaieh, Amin & Amin, Nor Aishah Saidina & Mazaheri, Hossein, 2013. "A review on novel processes of biodiesel production from waste cooking oil," Applied Energy, Elsevier, vol. 104(C), pages 683-710.
- Kannan, G.R. & Karvembu, R. & Anand, R., 2011. "Effect of metal based additive on performance emission and combustion characteristics of diesel engine fuelled with biodiesel," Applied Energy, Elsevier, vol. 88(11), pages 3694-3703.
- Salvi, B.L. & Subramanian, K.A. & Panwar, N.L., 2013. "Alternative fuels for transportation vehicles: A technical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 404-419.
- Quispe, César A.G. & Coronado, Christian J.R. & Carvalho Jr., João A., 2013. "Glycerol: Production, consumption, prices, characterization and new trends in combustion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 475-493.
- Mandolesi de Araújo, Carlos Daniel & de Andrade, Claudia Cristina & de Souza e Silva, Erika & Dupas, Francisco Antonio, 2013. "Biodiesel production from used cooking oil: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 445-452.
- Tariq, Muhammad & Ali, Saqib & Khalid, Nasir, 2012. "Activity of homogeneous and heterogeneous catalysts, spectroscopic and chromatographic characterization of biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 6303-6316.
- Ndayishimiye, Pascal & Tazerout, Mohand, 2011. "Use of palm oil-based biofuel in the internal combustion engines: Performance and emissions characteristics," Energy, Elsevier, vol. 36(3), pages 1790-1796.
- Mukhtar, Ahmad & Saqib, Sidra & Lin, Hongfei & Hassan Shah, Mansoor Ul & Ullah, Sami & Younas, Muhammad & Rezakazemi, Mashallah & Ibrahim, Muhammad & Mahmood, Abid & Asif, Saira & Bokhari, Awais, 2022. "Current status and challenges in the heterogeneous catalysis for biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
- George Roy, Roji & Ağbulut, Ümit & Preno Koshy, Chacko & Alex, Y. & Sailesh, K.S. & Afghan Khan, Sher & Jilte, Ravindra & Linul, Emanoil & Asif, Mohammad, 2024. "Impact of synthesizing surfactant-modified catalytic ceria nanoparticles on the performance and environmental behaviors of coconut oil/diesel-fueled CI engine: An optimization attempt," Energy, Elsevier, vol. 295(C).
- Silvia Cesarini & F. I. Javier Pastor & Per M. Nielsen & Pilar Diaz, 2015. "Moving towards a Competitive Fully Enzymatic Biodiesel Process," Sustainability, MDPI, vol. 7(6), pages 1-20, June.
- Samniang, Amonrat & Tipachan, Chuenkhuan & Kajorncheappun-ngam, Somjai, 2014. "Comparison of biodiesel production from crude Jatropha oil and Krating oil by supercritical methanol transesterification," Renewable Energy, Elsevier, vol. 68(C), pages 351-355.
- Arkadiusz Stępień & Wojciech Rejmer, 2022. "Effect of Fertilization with Meat and Bone Meal on the Production of Biofuel Obtained from Corn Grain," Energies, MDPI, vol. 16(1), pages 1-20, December.
- Lin, Lin & Cunshan, Zhou & Vittayapadung, Saritporn & Xiangqian, Shen & Mingdong, Dong, 2011. "Opportunities and challenges for biodiesel fuel," Applied Energy, Elsevier, vol. 88(4), pages 1020-1031, April.
- Enweremadu, C.C. & Mbarawa, M.M., 2009. "Technical aspects of production and analysis of biodiesel from used cooking oil--A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2205-2224, December.
- Badday, Ali Sabri & Abdullah, Ahmad Zuhairi & Lee, Keat-Teong, 2013. "Ultrasound-assisted transesterification of crude Jatropha oil using alumina-supported heteropolyacid catalyst," Applied Energy, Elsevier, vol. 105(C), pages 380-388.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:54:y:2013:i:c:p:156-160. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.
Printed from https://ideas.repec.org/a/eee/renene/v54y2013icp156-160.html