IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v46y2012icp14-22.html
   My bibliography  Save this article

Modelling and simulation of a wind-hydrogen CHP system with metal hydride storage

Author

Listed:
  • Pedrazzi, Simone
  • Zini, Gabriele
  • Tartarini, Paolo

Abstract

This paper describes the modelling and simulation of a wind-hydrogen system aimed at supplying electrical and thermal residential loads, where the thermal load is in part supplied by a catalytic hydrogen combustion device with hydrogen stored in a metal hydride system composed of a cluster of five metal hydride tanks equipped with a metal foam heat exchanger.

Suggested Citation

  • Pedrazzi, Simone & Zini, Gabriele & Tartarini, Paolo, 2012. "Modelling and simulation of a wind-hydrogen CHP system with metal hydride storage," Renewable Energy, Elsevier, vol. 46(C), pages 14-22.
  • Handle: RePEc:eee:renene:v:46:y:2012:i:c:p:14-22
    DOI: 10.1016/j.renene.2012.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112001905
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jamil, M. & Parsa, S. & Majidi, M., 1995. "Wind power statistics and an evaluation of wind energy density," Renewable Energy, Elsevier, vol. 6(5), pages 623-628.
    2. Lund, H. & Möller, B. & Mathiesen, B.V. & Dyrelund, A., 2010. "The role of district heating in future renewable energy systems," Energy, Elsevier, vol. 35(3), pages 1381-1390.
    3. Nema, Pragya & Nema, R.K. & Rangnekar, Saroj, 2009. "A current and future state of art development of hybrid energy system using wind and PV-solar: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 2096-2103, October.
    4. Ahmad, G.E. & El Shenawy, E.T., 2006. "Optimized photovoltiac system for hydrogen production," Renewable Energy, Elsevier, vol. 31(7), pages 1043-1054.
    5. Deshmukh, Sachin S. & Boehm, Robert F., 2008. "Review of modeling details related to renewably powered hydrogen systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2301-2330, December.
    6. Bowen, A.J & Cowie, M & Zakay, N, 2001. "The performance of a remote wind–diesel power system," Renewable Energy, Elsevier, vol. 22(4), pages 429-445.
    7. Kolhe, M. & Agbossou, K. & Hamelin, J. & Bose, T.K., 2003. "Analytical model for predicting the performance of photovoltaic array coupled with a wind turbine in a stand-alone renewable energy system based on hydrogen," Renewable Energy, Elsevier, vol. 28(5), pages 727-742.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Valverde-Isorna, L. & Ali, D. & Hogg, D. & Abdel-Wahab, M., 2016. "Modelling the performance of wind–hydrogen energy systems: Case study the Hydrogen Office in Scotland/UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1313-1332.
    2. Lacko, R. & Drobnič, B. & Mori, M. & Sekavčnik, M. & Vidmar, M., 2014. "Stand-alone renewable combined heat and power system with hydrogen technologies for household application," Energy, Elsevier, vol. 77(C), pages 164-170.
    3. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    4. Firtina-Ertis, Irem & Acar, Canan & Erturk, Ercan, 2020. "Optimal sizing design of an isolated stand-alone hybrid wind-hydrogen system for a zero-energy house," Applied Energy, Elsevier, vol. 274(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    2. Laura Canale & Anna Rita Di Fazio & Mario Russo & Andrea Frattolillo & Marco Dell’Isola, 2021. "An Overview on Functional Integration of Hybrid Renewable Energy Systems in Multi-Energy Buildings," Energies, MDPI, vol. 14(4), pages 1-33, February.
    3. Kanase-Patil, A.B. & Saini, R.P. & Sharma, M.P., 2011. "Sizing of integrated renewable energy system based on load profiles and reliability index for the state of Uttarakhand in India," Renewable Energy, Elsevier, vol. 36(11), pages 2809-2821.
    4. Zini, Gabriele & Tartarini, Paolo, 2010. "Wind-hydrogen energy stand-alone system with carbon storage: Modeling and simulation," Renewable Energy, Elsevier, vol. 35(11), pages 2461-2467.
    5. George Xydis, 2015. "Wind Energy Integration through District Heating. A Wind Resource Based Approach," Resources, MDPI, vol. 4(1), pages 1-18, March.
    6. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2017. "Optimisation of stand-alone hybrid energy systems supplemented by combustion-based prime movers," Applied Energy, Elsevier, vol. 196(C), pages 18-33.
    7. Gutiérrez-Martín, F. & Calcerrada, A.B. & de Lucas-Consuegra, A. & Dorado, F., 2020. "Hydrogen storage for off-grid power supply based on solar PV and electrochemical reforming of ethanol-water solutions," Renewable Energy, Elsevier, vol. 147(P1), pages 639-649.
    8. Davies, Huw Charles & Datardina, Naeem, 2013. "A probabilistic model for 1st stage dimensioning of renewable hydrogen transport micro-economies," Renewable Energy, Elsevier, vol. 60(C), pages 355-362.
    9. Aunedi, Marko & Pantaleo, Antonio Marco & Kuriyan, Kamal & Strbac, Goran & Shah, Nilay, 2020. "Modelling of national and local interactions between heat and electricity networks in low-carbon energy systems," Applied Energy, Elsevier, vol. 276(C).
    10. Mazaher Haji Bashi & Gholamreza Yousefi & Claus Leth Bak & Jayakrishnan Radhakrishna Pillai, 2016. "Long Term Expected Revenue of Wind Farms Considering the Bidding Admission Uncertainty," Energies, MDPI, vol. 9(11), pages 1-17, November.
    11. Karlsson, Kenneth B. & Petrović, Stefan N. & Næraa, Rikke, 2016. "Heat supply planning for the ecological housing community Munksøgård," Energy, Elsevier, vol. 115(P3), pages 1733-1747.
    12. Hinker, Jonas & Hemkendreis, Christian & Drewing, Emily & März, Steven & Hidalgo Rodríguez, Diego I. & Myrzik, Johanna M.A., 2017. "A novel conceptual model facilitating the derivation of agent-based models for analyzing socio-technical optimality gaps in the energy domain," Energy, Elsevier, vol. 137(C), pages 1219-1230.
    13. Liu, Wen & Hu, Weihao & Lund, Henrik & Chen, Zhe, 2013. "Electric vehicles and large-scale integration of wind power – The case of Inner Mongolia in China," Applied Energy, Elsevier, vol. 104(C), pages 445-456.
    14. Amelia DIACONU & Maria-Loredana POPESCU & Sorin BURLACU & Ovidiu Cristian Andrei BUZOIANU, 2019. "Strategic Options For The Development Of Renewable Energy In The Context Of Globalization," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 13(1), pages 1022-1029, November.
    15. Brand, Marek & Thorsen, Jan Eric & Svendsen, Svend, 2012. "Numerical modelling and experimental measurements for a low-temperature district heating substation for instantaneous preparation of DHW with respect to service pipes," Energy, Elsevier, vol. 41(1), pages 392-400.
    16. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    17. Sovacool, Benjamin K. & Martiskainen, Mari, 2020. "Hot transformations: Governing rapid and deep household heating transitions in China, Denmark, Finland and the United Kingdom," Energy Policy, Elsevier, vol. 139(C).
    18. Soheil Kavian & Mohsen Saffari Pour & Ali Hakkaki-Fard, 2019. "Optimized Design of the District Heating System by Considering the Techno-Economic Aspects and Future Weather Projection," Energies, MDPI, vol. 12(9), pages 1-30, May.
    19. Fridgen, Gilbert & Keller, Robert & Körner, Marc-Fabian & Schöpf, Michael, 2020. "A holistic view on sector coupling," Energy Policy, Elsevier, vol. 147(C).
    20. Guelpa, Elisa & Verda, Vittorio, 2019. "Compact physical model for simulation of thermal networks," Energy, Elsevier, vol. 175(C), pages 998-1008.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:46:y:2012:i:c:p:14-22. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.