IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v41y2012icp86-95.html
   My bibliography  Save this article

Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells

Author

Listed:
  • Roshandel, R.
  • Arbabi, F.
  • Moghaddam, G. Karimi

Abstract

Proton exchange membrane (PEM) fuel cell performance is directly related to the bipolar plate design and their channels pattern. Power enhancements can be achieved by optimal design of the type, size, or patterns of the channels. It has been realized that the bipolar plate design has significant role on reactant transport as well as water management in a PEM Fuel cell. Present work concentrates on improvements in the fuel cell performance by optimization of flow-field design and channels configurations. A three-dimensional, multi-component numerical model of flow distribution based on Navier–Stokes equations using individual computer code is presented. The simulation results showed excellent agreement with the experimental data in the previous publications. In this paper, a new bipolar plate design inspired from the existed biological fluid flow patterns in the leaf is presented and analyzed. The main design criteria in this research are based on more uniform velocity distribution and more homogeneous molar spreading of species along the flow channels and also higher voltage and power density output in different current densities. By developing a numerical code it was found that the velocity and pressure profiles on catalyst surface are much more uniform, reactant concentration on catalyst surface is very more homogeneous and the power density is higher than parallel and serpentine flow channels up to 56% and 26% respectively.

Suggested Citation

  • Roshandel, R. & Arbabi, F. & Moghaddam, G. Karimi, 2012. "Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells," Renewable Energy, Elsevier, vol. 41(C), pages 86-95.
  • Handle: RePEc:eee:renene:v:41:y:2012:i:c:p:86-95
    DOI: 10.1016/j.renene.2011.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148111005738
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2011.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tavakoli, B. & Roshandel, R., 2011. "The effect of fuel cell operational conditions on the water content distribution in the polymer electrolyte membrane," Renewable Energy, Elsevier, vol. 36(12), pages 3319-3331.
    2. Yan, Wei-Mon & Wang, Xiao-Dong & Lee, Duu-Jong & Zhang, Xin-Xin & Guo, Yi-Fan & Su, Ay, 2011. "Experimental study of commercial size proton exchange membrane fuel cell performance," Applied Energy, Elsevier, vol. 88(1), pages 392-396, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    2. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    3. Maidhily, M. & Rajalakshmi, N. & Dhathathreyan, K.S., 2013. "Electrochemical impedance spectroscopy as a diagnostic tool for the evaluation of flow field geometry in polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 51(C), pages 79-84.
    4. Suárez, Christian & Iranzo, Alfredo & Toharias, Baltasar & Rosa, Felipe, 2022. "Experimental and numerical Investigation on the design of a bioinspired PEM fuel cell," Energy, Elsevier, vol. 257(C).
    5. Yeh, Pulin & Chang, Chu Hsiang & Shih, Naichien & Yeh, Naichia, 2016. "Durability and efficiency tests for direct methanol fuel cell's long-term performance assessment," Energy, Elsevier, vol. 107(C), pages 716-724.
    6. Sadiq T. Bunyan & Hayder A. Dhahad & Dhamyaa S. Khudhur & Talal Yusaf, 2023. "The Effect of Flow Field Design Parameters on the Performance of PEMFC: A Review," Sustainability, MDPI, vol. 15(13), pages 1-62, June.
    7. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    8. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    9. Thomas, Sobi & Bates, Alex & Park, Sam & Sahu, A.K. & Lee, Sang C. & Son, Byung Rak & Kim, Joo Gon & Lee, Dong-Ha, 2016. "An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 765-776.
    10. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    11. Iranzo, A. & Arredondo, C.H. & Kannan, A.M. & Rosa, F., 2020. "Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends," Energy, Elsevier, vol. 190(C).
    12. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.
    13. Li, Hong-Wei & Liu, Jun-Nan & Yang, Yue & Fan, Wenxuan & Lu, Guo-Long, 2022. "Research on mass transport characteristics and net power performance under different flow channel streamlined imitated water-drop block arrangements for proton exchange membrane fuel cell," Energy, Elsevier, vol. 251(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taghiabadi, Mohammad Mohammadi & Zhiani, Mohammad & Silva, Valter, 2019. "Effect of MEA activation method on the long-term performance of PEM fuel cell," Applied Energy, Elsevier, vol. 242(C), pages 602-611.
    2. Jiao, Kui & Bachman, John & Zhou, Yibo & Park, Jae Wan, 2014. "Effect of induced cross flow on flow pattern and performance of proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 115(C), pages 75-82.
    3. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    4. Wu, Horng-Wen & Ku, Hui-Wen, 2011. "The optimal parameters estimation for rectangular cylinders installed transversely in the flow channel of PEMFC from a three-dimensional PEMFC model and the Taguchi method," Applied Energy, Elsevier, vol. 88(12), pages 4879-4890.
    5. Han, In-Su & Lim, Jongkoo & Jeong, Jeehoon & Shin, Hyun Khil, 2013. "Effect of serpentine flow-field designs on performance of PEMFC stacks for micro-CHP systems," Renewable Energy, Elsevier, vol. 54(C), pages 180-188.
    6. Huang, Zhen-Ming & Su, Ay & Liu, Ying-Chieh, 2014. "Development and testing of a hybrid system with a sub-kW open-cathode type PEM (proton exchange membrane) fuel cell stack," Energy, Elsevier, vol. 72(C), pages 547-553.
    7. Hasheminasab, M. & Kermani, M.J. & Nourazar, S.S. & Khodsiani, M.H., 2020. "A novel experimental based statistical study for water management in proton exchange membrane fuel cells," Applied Energy, Elsevier, vol. 264(C).
    8. Pahon, E. & Yousfi Steiner, N. & Jemei, S. & Hissel, D. & Moçoteguy, P., 2016. "A signal-based method for fast PEMFC diagnosis," Applied Energy, Elsevier, vol. 165(C), pages 748-758.
    9. Boulon, L. & Agbossou, K. & Hissel, D. & Sicard, P. & Bouscayrol, A. & Péra, M.-C., 2012. "A macroscopic PEM fuel cell model including water phenomena for vehicle simulation," Renewable Energy, Elsevier, vol. 46(C), pages 81-91.
    10. Guo-Bin Jung & Li-Hsing Fang & Min-Jay Chiou & Xuan-Vien Nguyen & Ay Su & Win-Tai Lee & Shu-Wei Chang & I-Cheng Kao & Jyun-Wei Yu, 2014. "Effects of Pretreatment Methods on Electrodes and SOFC Performance," Energies, MDPI, vol. 7(6), pages 1-12, June.
    11. Meidanshahi, Vida & Karimi, Gholamreza, 2012. "Dynamic modeling, optimization and control of power density in a PEM fuel cell," Applied Energy, Elsevier, vol. 93(C), pages 98-105.
    12. Hosseinzadeh, Elham & Rokni, Masoud & Rabbani, Abid & Mortensen, Henrik Hilleke, 2013. "Thermal and water management of low temperature Proton Exchange Membrane Fuel Cell in fork-lift truck power system," Applied Energy, Elsevier, vol. 104(C), pages 434-444.
    13. Wan, Zhongmin & Liu, Jing & Luo, Zhiping & Tu, Zhengkai & Liu, Zhichun & Liu, Wei, 2013. "Evaluation of self-water-removal in a dead-ended proton exchange membrane fuel cell," Applied Energy, Elsevier, vol. 104(C), pages 751-757.
    14. Ozden, Adnan & Shahgaldi, Samaneh & Li, Xianguo & Hamdullahpur, Feridun, 2018. "A graphene-based microporous layer for proton exchange membrane fuel cells: Characterization and performance comparison," Renewable Energy, Elsevier, vol. 126(C), pages 485-494.
    15. Jang, Jer-Huan & Yan, Wei-Mon & Chiu, Han-Chieh & Lui, Jun-Yi, 2015. "Dynamic cell performance of kW-grade proton exchange membrane fuel cell stack with dead-ended anode," Applied Energy, Elsevier, vol. 142(C), pages 108-114.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:41:y:2012:i:c:p:86-95. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.