IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp79-84.html
   My bibliography  Save this article

Electrochemical impedance spectroscopy as a diagnostic tool for the evaluation of flow field geometry in polymer electrolyte membrane fuel cells

Author

Listed:
  • Maidhily, M.
  • Rajalakshmi, N.
  • Dhathathreyan, K.S.

Abstract

In the present study, two different designs of flow field have been evaluated by electrochemical impedance spectroscopy for polymer electrolyte membrane fuel cells. Ex-situ experiments were conducted in serpentine and interdigitated flow field geometry. We have investigated the serpentine type flow field designs with varying rib and channel width geometry and studied their influence on the PEMFC performance. The anodic and cathodic resistances were also evaluated using symmetrical mode of operation. The three different types of multichannel serpentine geometry with 2, 1 and 0.7 mm rib and channel widths were used for evaluation and found that the mass transfer resistance was decreasing with rib& channel width thickness. The mass transfer resistance decreased by one order from 0.197 Ω for 2 mm channel width to 0.016 Ω for 0.7 mm channel width. The maximum power density obtained for PEMFC operating on H2/Air at 50 °C, with 0.7, 1&2 mm rib and channel width was found to be 365, 291 and 202 mW/cm2 respectively. This study emphasized the effect of rib and channel width geometry of flow fields by symmetrical mode of fuel cell operation using electrochemical impedance spectroscopy to obtain the anodic and cathodic mass transfer resistance individually.

Suggested Citation

  • Maidhily, M. & Rajalakshmi, N. & Dhathathreyan, K.S., 2013. "Electrochemical impedance spectroscopy as a diagnostic tool for the evaluation of flow field geometry in polymer electrolyte membrane fuel cells," Renewable Energy, Elsevier, vol. 51(C), pages 79-84.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:79-84
    DOI: 10.1016/j.renene.2012.09.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112005873
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.09.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roshandel, R. & Arbabi, F. & Moghaddam, G. Karimi, 2012. "Simulation of an innovative flow-field design based on a bio inspired pattern for PEM fuel cells," Renewable Energy, Elsevier, vol. 41(C), pages 86-95.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Junye, 2015. "Theory and practice of flow field designs for fuel cell scaling-up: A critical review," Applied Energy, Elsevier, vol. 157(C), pages 640-663.
    2. Wilberforce, Tabbi & El Hassan, Zaki & Ogungbemi, Emmanuel & Ijaodola, O. & Khatib, F.N. & Durrant, A. & Thompson, J. & Baroutaji, A. & Olabi, A.G., 2019. "A comprehensive study of the effect of bipolar plate (BP) geometry design on the performance of proton exchange membrane (PEM) fuel cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 236-260.
    3. Wu, Horng-Wen, 2016. "A review of recent development: Transport and performance modeling of PEM fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 81-106.
    4. Iranzo, A. & Arredondo, C.H. & Kannan, A.M. & Rosa, F., 2020. "Biomimetic flow fields for proton exchange membrane fuel cells: A review of design trends," Energy, Elsevier, vol. 190(C).
    5. Sadiq T. Bunyan & Hayder A. Dhahad & Dhamyaa S. Khudhur & Talal Yusaf, 2023. "The Effect of Flow Field Design Parameters on the Performance of PEMFC: A Review," Sustainability, MDPI, vol. 15(13), pages 1-62, June.
    6. Thomas, Sobi & Bates, Alex & Park, Sam & Sahu, A.K. & Lee, Sang C. & Son, Byung Rak & Kim, Joo Gon & Lee, Dong-Ha, 2016. "An experimental and simulation study of novel channel designs for open-cathode high-temperature polymer electrolyte membrane fuel cells," Applied Energy, Elsevier, vol. 165(C), pages 765-776.
    7. Hossein Pourrahmani & Majid Siavashi & Adel Yavarinasab & Mardit Matian & Nazanin Chitgar & Ligang Wang & Jan Van herle, 2022. "A Review on the Long-Term Performance of Proton Exchange Membrane Fuel Cells: From Degradation Modeling to the Effects of Bipolar Plates, Sealings, and Contaminants," Energies, MDPI, vol. 15(14), pages 1-30, July.
    8. Wang, Yulin & Guan, Chao & Li, Hua & Zhao, Yulong & Wang, Cheng & He, Wei, 2023. "Flow field configuration design for a large-scale hydrogen polymer electrolyte membrane fuel cell," Applied Energy, Elsevier, vol. 351(C).
    9. Zhou, Yu & Chen, Ben, 2023. "Investigation of optimization and evaluation criteria for flow field in proton exchange membrane fuel cell: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 185(C).
    10. Yeh, Pulin & Chang, Chu Hsiang & Shih, Naichien & Yeh, Naichia, 2016. "Durability and efficiency tests for direct methanol fuel cell's long-term performance assessment," Energy, Elsevier, vol. 107(C), pages 716-724.
    11. Zhang, Shuanyang & Liu, Shun & Xu, Hongtao & Liu, Gaojie & Wang, Ke, 2022. "Performance of proton exchange membrane fuel cells with honeycomb-like flow channel design," Energy, Elsevier, vol. 239(PB).
    12. Li, Hong-Wei & Liu, Jun-Nan & Yang, Yue & Fan, Wenxuan & Lu, Guo-Long, 2022. "Research on mass transport characteristics and net power performance under different flow channel streamlined imitated water-drop block arrangements for proton exchange membrane fuel cell," Energy, Elsevier, vol. 251(C).
    13. Suárez, Christian & Iranzo, Alfredo & Toharias, Baltasar & Rosa, Felipe, 2022. "Experimental and numerical Investigation on the design of a bioinspired PEM fuel cell," Energy, Elsevier, vol. 257(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:79-84. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.