IDEAS home Printed from
   My bibliography  Save this article

Calculation of bright roof-tops for solar PV applications in Dhaka Megacity, Bangladesh


  • Kabir, Md. Humayun
  • Endlicher, Wilfried
  • Jägermeyr, Jonas


Bangladesh has already been known as the country of power crisis. Although the country's electricity generation capacity is 4275MW, around 3000–3500MW of electricity can be generated against the demand of more than 5000MW. The country's power is being generated mostly with conventional fuel (82% indigenous natural gas, 9% imported oil, 5% coal) and renewable sources (4% hydropower and solar). But recently a remarkable decline of the indigenous gas takes place, which rapidly aggravates electricity generation. Dhaka, the capital as well as prime city of the country with its nearly 14 million populations faces the worst situation due to the shortfall of electricity. Around 1000–1200MW of electricity is supplied to Dhaka Megacity, while the existing demand is nearly 2000MW. As a result frequent load shedding takes place and most of the service sectors in the city are interrupted, which has recently created immense dissatisfaction among the city-dwellers. Given the city's power crisis and geophysical situations, applications of either stand-alone or grid connected PV systems would be very effective and pragmatic for power supplement. The conservative calculation of bright roof-tops from the Quickbird Scene 2006 of Dhaka city indicates that the city offers 10.554km2 of bright roof-tops within the Dhaka City Corporation (DCC) ward area (134.282km2). The application of stand-alone PV systems with 75Wp solar modules can generate nearly 1000MW of electrical power, which can substantially meet the city's power demand.

Suggested Citation

  • Kabir, Md. Humayun & Endlicher, Wilfried & Jägermeyr, Jonas, 2010. "Calculation of bright roof-tops for solar PV applications in Dhaka Megacity, Bangladesh," Renewable Energy, Elsevier, vol. 35(8), pages 1760-1764.
  • Handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1760-1764
    DOI: 10.1016/j.renene.2009.11.016

    Download full text from publisher

    File URL:
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL:
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item

    As the access to this document is restricted, you may want to search for a different version of it.


    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.

    Cited by:

    1. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    2. Islam, Md. Tasbirul & Shahir, S.A. & Uddin, T.M. Iftakhar & Saifullah, A.Z.A, 2014. "Current energy scenario and future prospect of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1074-1088.
    3. Jacques, David A. & Gooding, James & Giesekam, Jannik J. & Tomlin, Alison S. & Crook, Rolf, 2014. "Methodology for the assessment of PV capacity over a city region using low-resolution LiDAR data and application to the City of Leeds (UK)," Applied Energy, Elsevier, vol. 124(C), pages 28-34.
    4. Byrne, John & Taminiau, Job & Kurdgelashvili, Lado & Kim, Kyung Nam, 2015. "A review of the solar city concept and methods to assess rooftop solar electric potential, with an illustrative application to the city of Seoul," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 830-844.
    5. Ruhang, Xu, 2016. "The restriction research for urban area building integrated grid-connected PV power generation potential," Energy, Elsevier, vol. 113(C), pages 124-143.
    6. Sun, Yan-wei & Hof, Angela & Wang, Run & Liu, Jian & Lin, Yan-jie & Yang, De-wei, 2013. "GIS-based approach for potential analysis of solar PV generation at the regional scale: A case study of Fujian Province," Energy Policy, Elsevier, vol. 58(C), pages 248-259.
    7. Bódis, Katalin & Kougias, Ioannis & Jäger-Waldau, Arnulf & Taylor, Nigel & Szabó, Sándor, 2019. "A high-resolution geospatial assessment of the rooftop solar photovoltaic potential in the European Union," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Seihun Yang & Weiming Chen & Hana Kim, 2021. "Building Energy Commons: Three Mini-PV Installation Cases in Apartment Complexes in Seoul," Energies, MDPI, vol. 14(1), pages 1-14, January.
    9. Bocca, Alberto & Chiavazzo, Eliodoro & Macii, Alberto & Asinari, Pietro, 2015. "Solar energy potential assessment: An overview and a fast modeling approach with application to Italy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 291-296.
    10. Mondal, Md. Alam Hossain & Denich, Manfred, 2010. "Assessment of renewable energy resources potential for electricity generation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2401-2413, October.
    11. Hassan, Md. Kamrul & Pelkonen, Paavo & Pappinen, Ari, 2014. "Rural households’ knowledge and perceptions of renewables with special attention on bioenergy resources development – Results from a field study in Bangladesh," Applied Energy, Elsevier, vol. 136(C), pages 454-464.
    12. Schallenberg-Rodríguez, Julieta, 2013. "Photovoltaic techno-economical potential on roofs in regions and islands: The case of the Canary Islands. Methodological review and methodology proposal," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 219-239.
    13. Adam Juma Abdallah Gudo & Marye Belete & Ghali Abdullahi Abubakar & Jinsong Deng, 2020. "Spatio-Temporal Analysis of Solar Energy Potential for Domestic and Agricultural Utilization to Diminish Poverty in Jubek State, South Sudan, Africa," Energies, MDPI, vol. 13(6), pages 1-22, March.
    14. Abdul Hasib Siddique & Sumaiya Tasnim & Fahim Shahriyar & Mehedi Hasan & Khalid Rashid, 2021. "Renewable Energy Sector in Bangladesh: The Current Scenario, Challenges and the Role of IoT in Building a Smart Distribution Grid," Energies, MDPI, vol. 14(16), pages 1-24, August.
    15. McPherson, Madeleine & Ismail, Malik & Hoornweg, Daniel & Metcalfe, Murray, 2018. "Planning for variable renewable energy and electric vehicle integration under varying degrees of decentralization: A case study in Lusaka, Zambia," Energy, Elsevier, vol. 151(C), pages 332-346.
    16. Zhong, Teng & Zhang, Zhixin & Chen, Min & Zhang, Kai & Zhou, Zixuan & Zhu, Rui & Wang, Yijie & Lü, Guonian & Yan, Jinyue, 2021. "A city-scale estimation of rooftop solar photovoltaic potential based on deep learning," Applied Energy, Elsevier, vol. 298(C).
    17. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    18. Sujit Kumar Sikder & Francis Eanes & Henok Birhanu Asmelash & Shiba Kar & Theo Koetter, 2016. "The Contribution of Energy-Optimized Urban Planning to Efficient Resource Use–A Case Study on Residential Settlement Development in Dhaka City, Bangladesh," Sustainability, MDPI, vol. 8(2), pages 1-19, February.
    19. Thai, Clinton & Brouwer, Jack, 2021. "Challenges estimating distributed solar potential with utilization factors: California universities case study," Applied Energy, Elsevier, vol. 282(PB).


    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:35:y:2010:i:8:p:1760-1764. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: . General contact details of provider: .

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service hosted by the Research Division of the Federal Reserve Bank of St. Louis . RePEc uses bibliographic data supplied by the respective publishers.