IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125008043.html

A TSFLinear model for wind power prediction with feature decomposition-clustering

Author

Listed:
  • Huawei, Mei
  • Qingyuan, Zhu
  • Wangbin, Cao

Abstract

Wind power forecasting plays a crucial role in ensuring the stable operation of power grids. To enhance the forecasting accuracy, this study introduces a time-step stacking fusion linear model (TSFLinear) with feature decomposition-clustering. Specifically, the time-step stacking operation amplifies the importance of key time steps across the entire time series, while the time-step fusion operation retains short-term dynamic features and integrates long-term trend information, thereby improving the overall quality of the time series. During the model optimization phase, the K-means clustering algorithm is employed to cluster the signals after variational mode decomposition (VMD), generating two new data subsets. This approach effectively eliminates noise and reduces the input of redundant features. Comparative experimental results demonstrate that the TSFLinear model can effectively capture the clustered subsets of high-frequency signals. In addition, through a comparative analysis with seven Transformer variants, the baseline linear model and its variant, TSFLinear, demonstrate a significant challenge to the performance of the Transformer model and its variants in the field of time-series forecasting. The experimental results show that the proposed forecasting strategy achieves optimal R2 values of 0.9848, 0.9914, and 0.9942 across three wind power datasets, indicating excellent prediction accuracy and strong generalization capability.

Suggested Citation

  • Huawei, Mei & Qingyuan, Zhu & Wangbin, Cao, 2025. "A TSFLinear model for wind power prediction with feature decomposition-clustering," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008043
    DOI: 10.1016/j.renene.2025.123142
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125008043
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.123142?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yang, Mao & Guo, Yunfeng & Huang, Tao & Zhang, Wei, 2025. "Power prediction considering NWP wind speed error tolerability: A strategy to improve the accuracy of short-term wind power prediction under wind speed offset scenarios," Applied Energy, Elsevier, vol. 377(PD).
    2. Ahn, EunJi & Hur, Jin, 2023. "A short-term forecasting of wind power outputs using the enhanced wavelet transform and arimax techniques," Renewable Energy, Elsevier, vol. 212(C), pages 394-402.
    3. Sun, Yang & Tian, Zhirui, 2025. "Solving few-shot problem in wind speed prediction: A novel transfer strategy based on decomposition and learning ensemble," Applied Energy, Elsevier, vol. 377(PD).
    4. Ma, Kai & Nie, Xuefeng & Yang, Jie & Zha, Linlin & Li, Guoqiang & Li, Haibin, 2025. "A power load forecasting method in port based on VMD-ICSS-hybrid neural network," Applied Energy, Elsevier, vol. 377(PB).
    5. Karijadi, Irene & Chou, Shuo-Yan & Dewabharata, Anindhita, 2023. "Wind power forecasting based on hybrid CEEMDAN-EWT deep learning method," Renewable Energy, Elsevier, vol. 218(C).
    6. Zhong, Lingshu & Wu, Pan & Pei, Mingyang, 2024. "Wind power generation prediction during the COVID-19 epidemic based on novel hybrid deep learning techniques," Renewable Energy, Elsevier, vol. 222(C).
    7. Wang, Sen & Sun, Yonghui & Zhang, Wenjie & Chung, C.Y. & Srinivasan, Dipti, 2024. "Very short-term wind power forecasting considering static data: An improved transformer model," Energy, Elsevier, vol. 312(C).
    8. Yang, Mao & Che, Runqi & Yu, Xinnan & Su, Xin, 2024. "Dual NWP wind speed correction based on trend fusion and fluctuation clustering and its application in short-term wind power prediction," Energy, Elsevier, vol. 302(C).
    9. Yang, Mao & Wang, Da & Zhang, Wei & Yv, Xinnan, 2024. "A centralized power prediction method for large-scale wind power clusters based on dynamic graph neural network," Energy, Elsevier, vol. 310(C).
    10. Tu, Yu & Chen, Yaoran & Zhang, Kai & He, Ruiyang & Han, Zhaolong & Zhou, Dai, 2025. "A multi-fidelity framework for power prediction of wind farm under yaw misalignment," Applied Energy, Elsevier, vol. 377(PC).
    11. Aasim, & Singh, S.N. & Mohapatra, Abheejeet, 2019. "Repeated wavelet transform based ARIMA model for very short-term wind speed forecasting," Renewable Energy, Elsevier, vol. 136(C), pages 758-768.
    12. Cao, Wangbin & Wang, Guangxing & Liang, Xiaolin & Hu, Zhengwei, 2024. "A STAM-LSTM model for wind power prediction with feature selection," Energy, Elsevier, vol. 296(C).
    13. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    14. Duan, Guiyue & Gattari, Daniele & Porté-Agel, Fernando, 2025. "Theoretical and experimental study on power performance and wake characteristics of a floating wind turbine under pitch motion," Applied Energy, Elsevier, vol. 378(PA).
    15. Zheng, Xidong & Bai, Feifei & Zeng, Ziyang & Jin, Tao, 2024. "A new methodology to improve wind power prediction accuracy considering power quality disturbance dimension reduction and elimination," Energy, Elsevier, vol. 287(C).
    16. Yang, Mao & Guo, Yunfeng & Fan, Fulin & Huang, Tao, 2024. "Two-stage correction prediction of wind power based on numerical weather prediction wind speed superposition correction and improved clustering," Energy, Elsevier, vol. 302(C).
    17. Wang, Shuangxin & Shi, Jiarong & Yang, Wei & Yin, Qingyan, 2024. "High and low frequency wind power prediction based on Transformer and BiGRU-Attention," Energy, Elsevier, vol. 288(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gao, JiaJing & Xing, HongMei & Wang, YongSheng & Liu, GuangChen & Cheng, Bo & Zhang, DeLong, 2025. "Ultra-short-term wind power prediction based on hybrid denoising with improved CEEMD decomposition," Renewable Energy, Elsevier, vol. 251(C).
    2. Li, Jianfang & Jia, Li & Zhou, Chengyu, 2024. "Probability density function based adaptive ensemble learning with global convergence for wind power prediction," Energy, Elsevier, vol. 312(C).
    3. Bashir, Tasarruf & Wang, Huifang & Tahir, Mustafa & Zhang, Yixiang, 2025. "Wind and solar power forecasting based on hybrid CNN-ABiLSTM, CNN-transformer-MLP models," Renewable Energy, Elsevier, vol. 239(C).
    4. Yingjie Liu & Mao Yang, 2025. "Ultra-Short-Term Photovoltaic Power Prediction Based on Predictable Component Reconstruction and Spatiotemporal Heterogeneous Graph Neural Networks," Energies, MDPI, vol. 18(15), pages 1-30, August.
    5. Yang, Mao & Jiang, Yuxi & Xu, Chuanyu & Wang, Bo & Wang, Zhao & Su, Xin, 2025. "Day-ahead wind farm cluster power prediction based on trend categorization and spatial information integration model," Applied Energy, Elsevier, vol. 388(C).
    6. Wang, Jianguo & Yuan, Weiru & Zhang, Shude & Cheng, Shun & Han, Lincheng, 2024. "Implementing ultra-short-term wind power forecasting without information leakage through cascade decomposition and attention mechanism," Energy, Elsevier, vol. 312(C).
    7. Yao, Xianshuang & Guo, Kangshuai & Lei, Jianqi & Li, Xuanyu, 2024. "Fully connected multi-reservoir echo state networks for wind power prediction," Energy, Elsevier, vol. 312(C).
    8. Wang, Da & Yang, Mao & Zhang, Wei & Ma, Chenglian & Su, Xin, 2025. "Short-term power prediction method of wind farm cluster based on deep spatiotemporal correlation mining," Applied Energy, Elsevier, vol. 380(C).
    9. Yu, Yue & Xiao, Xinping & Gao, Mingyun & Rao, Congjun, 2025. "Dynamic time-delay discrete grey model based on GOWA operator for renewable energy generation cost prediction," Renewable Energy, Elsevier, vol. 242(C).
    10. Jie Du & Shuaizhi Chen & Linlin Pan & Yubao Liu, 2025. "A Wind Speed Prediction Method Based on Signal Decomposition Technology Deep Learning Model," Energies, MDPI, vol. 18(5), pages 1-26, February.
    11. Geng, Donghan & Zhang, Yongkang & Zhang, Yunlong & Qu, Xingchuang & Li, Longfei, 2025. "A hybrid model based on CapSA-VMD-ResNet-GRU-attention mechanism for ultra-short-term and short-term wind speed prediction," Renewable Energy, Elsevier, vol. 240(C).
    12. Xiao, Liexi & Meng, Anbo & Rong, Jiayu & Zhang, Haitao & Xian, Zikang & Li, Chen & Zhu, Jianbin & Yin, Yiding & Li, Hanhong & Tang, Yanshu & Yin, Hao & Li, Xuecong & Liu, Jiawei, 2025. "A dual-dimensionality reduction attention mechanism with fusion of high-dimensional features for wind power prediction," Renewable Energy, Elsevier, vol. 247(C).
    13. Cai, Xiangjun & Li, Dagang & Zou, Yuntao & Liu, Zhichun & Heidari, Ali Asghar & Chen, Huiling, 2025. "A hybrid wind speed forecasting model with rolling mapping decomposition and temporal convolutional networks," Energy, Elsevier, vol. 324(C).
    14. Li, Min & Yang, Yi & He, Zhaoshuang & Guo, Xinbo & Zhang, Ruisheng & Huang, Bingqing, 2023. "A wind speed forecasting model based on multi-objective algorithm and interpretability learning," Energy, Elsevier, vol. 269(C).
    15. Liu, Xiaolei & Lin, Zi & Feng, Ziming, 2021. "Short-term offshore wind speed forecast by seasonal ARIMA - A comparison against GRU and LSTM," Energy, Elsevier, vol. 227(C).
    16. Lim, Juin Yau & Safder, Usman & How, Bing Shen & Ifaei, Pouya & Yoo, Chang Kyoo, 2021. "Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model," Applied Energy, Elsevier, vol. 283(C).
    17. Liang, Tao & Zhao, Qing & Lv, Qingzhao & Sun, Hexu, 2021. "A novel wind speed prediction strategy based on Bi-LSTM, MOOFADA and transfer learning for centralized control centers," Energy, Elsevier, vol. 230(C).
    18. Wang, Ying & Li, Hongmin & Jahanger, Atif & Li, Qiwei & Wang, Biao & Balsalobre-Lorente, Daniel, 2024. "A novel ensemble electricity load forecasting system based on a decomposition-selection-optimization strategy," Energy, Elsevier, vol. 312(C).
    19. Liu, Xingdou & Zhang, Li & Wang, Jiangong & Zhou, Yue & Gan, Wei, 2023. "A unified multi-step wind speed forecasting framework based on numerical weather prediction grids and wind farm monitoring data," Renewable Energy, Elsevier, vol. 211(C), pages 948-963.
    20. Tian, Zhongda & Chen, Hao, 2021. "Multi-step short-term wind speed prediction based on integrated multi-model fusion," Applied Energy, Elsevier, vol. 298(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125008043. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.