IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v248y2025ics0960148125006470.html

Mitigating uncertainty effects in the performance of energy management systems for isolated microgrids integrating small productive processes

Author

Listed:
  • Espín-Sarzosa, Danny
  • Aguirre, Sebastián
  • Valencia, Felipe
  • Vega, Jorge
  • Mendoza-Araya, Patricio
  • Okoye, Martin Onyeka

Abstract

Isolated microgrids (MGs) face various operating challenges. Their techno-economic performance is addressed by an energy management system (EMS) that promotes operating safely and reliably. Given the nature of the small productive processes (SPPs), usually based on renewable energies like solar, the consideration of uncertainties on those EMSs is paramount. This work introduces an interval-based robust energy management system (IREMS) that targets the operation of MGs that support solar SPPs, which often have voltage-dependent loads. The IREMS is complemented by an extended multi-zone ZIP model (EMZ-ZIP). Results from a case study considering a 9-bus MG and a solar drying SPP demonstrate better performance than a state-of-the-art deterministic AC EMS, especially when including full dynamic simulation of the MG. Although the proposed IREMS increases the expected cost, by less than 1.6% compared to the benchmark scenario, and up to 5.5% under extreme weather case with high solar generation deviation. Additionally, the proposed IREMS performs better in terms of tracking errors of power generation, particularly in zones with higher uncertainty, reducing the total average power tracking error by up to 11%. Finally, the computational time of IREMS is slightly higher, taking at most around 6% more computational time than the benchmark case.

Suggested Citation

  • Espín-Sarzosa, Danny & Aguirre, Sebastián & Valencia, Felipe & Vega, Jorge & Mendoza-Araya, Patricio & Okoye, Martin Onyeka, 2025. "Mitigating uncertainty effects in the performance of energy management systems for isolated microgrids integrating small productive processes," Renewable Energy, Elsevier, vol. 248(C).
  • Handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125006470
    DOI: 10.1016/j.renene.2025.122985
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125006470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122985?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Shanmugarajah Vinothine & Lidula N. Widanagama Arachchige & Athula D. Rajapakse & Roshani Kaluthanthrige, 2022. "Microgrid Energy Management and Methods for Managing Forecast Uncertainties," Energies, MDPI, vol. 15(22), pages 1-22, November.
    2. Zhang, Yan & Fu, Lijun & Zhu, Wanlu & Bao, Xianqiang & Liu, Cang, 2018. "Robust model predictive control for optimal energy management of island microgrids with uncertainties," Energy, Elsevier, vol. 164(C), pages 1229-1241.
    3. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Felipe Valencia, 2021. "Modeling of Small Productive Processes for the Operation of a Microgrid," Energies, MDPI, vol. 14(14), pages 1-19, July.
    4. Chan-González Jorge de Jesús & Castillo Téllez Margarita & Castillo-Téllez Beatriz & Lezama-Zárraga Francisco Román & Mejía-Pérez Gerardo Alberto & Vega-Gómez Carlos Jesahel, 2021. "Improvements and Evaluation on Bitter Orange Leaves ( Citrus aurantium L.) Solar Drying in Humid Climates," Sustainability, MDPI, vol. 13(16), pages 1-17, August.
    5. Burak Kocuk & Santanu S. Dey & X. Andy Sun, 2016. "Strong SOCP Relaxations for the Optimal Power Flow Problem," Operations Research, INFORMS, vol. 64(6), pages 1177-1196, December.
    6. Huihui He & Shengjun Huang & Yajie Liu & Tao Zhang & Shi Cheng, 2021. "Robust Model Predictive Control for Energy Management of Isolated Microgrids Based on Interval Prediction," Discrete Dynamics in Nature and Society, Hindawi, vol. 2021, pages 1-14, October.
    7. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Felipe Valencia-Arroyave, 2023. "Towards Digital Twins of Small Productive Processes in Microgrids," Energies, MDPI, vol. 16(11), pages 1-17, May.
    8. Ghasemi, Ahmad & Enayatzare, Mehdi, 2018. "Optimal energy management of a renewable-based isolated microgrid with pumped-storage unit and demand response," Renewable Energy, Elsevier, vol. 123(C), pages 460-474.
    9. Oscar Núñez-Mata & Rodrigo Palma-Behnke & Felipe Valencia & Patricio Mendoza-Araya & Guillermo Jiménez-Estévez, 2018. "Adaptive Protection System for Microgrids Based on a Robust Optimization Strategy," Energies, MDPI, vol. 11(2), pages 1-16, February.
    10. Muhammed Y. Worku & Mohamed A. Hassan & Mohamed A. Abido, 2019. "Real Time Energy Management and Control of Renewable Energy based Microgrid in Grid Connected and Island Modes," Energies, MDPI, vol. 12(2), pages 1-18, January.
    11. Zia, Muhammad Fahad & Elbouchikhi, Elhoussin & Benbouzid, Mohamed, 2018. "Microgrids energy management systems: A critical review on methods, solutions, and prospects," Applied Energy, Elsevier, vol. 222(C), pages 1033-1055.
    12. Raya-Armenta, Jose Maurilio & Bazmohammadi, Najmeh & Avina-Cervantes, Juan Gabriel & Sáez, Doris & Vasquez, Juan C. & Guerrero, Josep M., 2021. "Energy management system optimization in islanded microgrids: An overview and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Danny Espín-Sarzosa & Rodrigo Palma-Behnke & Oscar Núñez-Mata, 2020. "Energy Management Systems for Microgrids: Main Existing Trends in Centralized Control Architectures," Energies, MDPI, vol. 13(3), pages 1-32, January.
    2. Makbul A.M. Ramli & H.R.E.H. Bouchekara & Abdulsalam S. Alghamdi, 2019. "Efficient Energy Management in a Microgrid with Intermittent Renewable Energy and Storage Sources," Sustainability, MDPI, vol. 11(14), pages 1-28, July.
    3. Hu, Mian & Wang, Yan-Wu & Xiao, Jiang-Wen & Lin, Xiangning, 2019. "Multi-energy management with hierarchical distributed multi-scale strategy for pelagic islanded microgrid clusters," Energy, Elsevier, vol. 185(C), pages 910-921.
    4. Ana Cabrera-Tobar & Alessandro Massi Pavan & Giovanni Petrone & Giovanni Spagnuolo, 2022. "A Review of the Optimization and Control Techniques in the Presence of Uncertainties for the Energy Management of Microgrids," Energies, MDPI, vol. 15(23), pages 1-38, December.
    5. Lilia Tightiz & Joon Yoo, 2022. "A Review on a Data-Driven Microgrid Management System Integrating an Active Distribution Network: Challenges, Issues, and New Trends," Energies, MDPI, vol. 15(22), pages 1-24, November.
    6. Zhu, Junjie & Huang, Shengjun & Liu, Yajie & Lei, Hongtao & Sang, Bo, 2021. "Optimal energy management for grid-connected microgrids via expected-scenario-oriented robust optimization," Energy, Elsevier, vol. 216(C).
    7. Àlex Alonso-Travesset & Helena Martín & Sergio Coronas & Jordi de la Hoz, 2022. "Optimization Models under Uncertainty in Distributed Generation Systems: A Review," Energies, MDPI, vol. 15(5), pages 1-40, March.
    8. Sharma, Pavitra & Dutt Mathur, Hitesh & Mishra, Puneet & Bansal, Ramesh C., 2022. "A critical and comparative review of energy management strategies for microgrids," Applied Energy, Elsevier, vol. 327(C).
    9. Uddin, Moslem & Romlie, M.F. & Abdullah, M.F. & Tan, ChiaKwang & Shafiullah, GM & Bakar, A.H.A., 2020. "A novel peak shaving algorithm for islanded microgrid using battery energy storage system," Energy, Elsevier, vol. 196(C).
    10. Pavel Ilyushin & Vladislav Volnyi & Konstantin Suslov & Sergey Filippov, 2023. "State-of-the-Art Literature Review of Power Flow Control Methods for Low-Voltage AC and AC-DC Microgrids," Energies, MDPI, vol. 16(7), pages 1-35, March.
    11. Andreu Cecilia & Javier Carroquino & Vicente Roda & Ramon Costa-Castelló & Félix Barreras, 2020. "Optimal Energy Management in a Standalone Microgrid, with Photovoltaic Generation, Short-Term Storage, and Hydrogen Production," Energies, MDPI, vol. 13(6), pages 1-24, March.
    12. Polimeni, Simone & Moretti, Luca & Martelli, Emanuele & Leva, Sonia & Manzolini, Giampaolo, 2023. "A novel stochastic model for flexible unit commitment of off-grid microgrids," Applied Energy, Elsevier, vol. 331(C).
    13. Gui, Yonghao & Wei, Baoze & Li, Mingshen & Guerrero, Josep M. & Vasquez, Juan C., 2018. "Passivity-based coordinated control for islanded AC microgrid," Applied Energy, Elsevier, vol. 229(C), pages 551-561.
    14. Chih-Ta Tsai & Teketay Mulu Beza & Wei-Bin Wu & Cheng-Chien Kuo, 2019. "Optimal Configuration with Capacity Analysis of a Hybrid Renewable Energy and Storage System for an Island Application," Energies, MDPI, vol. 13(1), pages 1-28, December.
    15. Singh, Bharat & Kumar, Ashwani, 2023. "Optimal energy management and feasibility analysis of hybrid renewable energy sources with BESS and impact of electric vehicle load with demand response program," Energy, Elsevier, vol. 278(PA).
    16. Nyong-Bassey, Bassey Etim & Giaouris, Damian & Patsios, Charalampos & Papadopoulou, Simira & Papadopoulos, Athanasios I. & Walker, Sara & Voutetakis, Spyros & Seferlis, Panos & Gadoue, Shady, 2020. "Reinforcement learning based adaptive power pinch analysis for energy management of stand-alone hybrid energy storage systems considering uncertainty," Energy, Elsevier, vol. 193(C).
    17. Sun, Alexander Y., 2020. "Optimal carbon storage reservoir management through deep reinforcement learning," Applied Energy, Elsevier, vol. 278(C).
    18. Thomas Schmitt & Tobias Rodemann & Jürgen Adamy, 2021. "The Cost of Photovoltaic Forecasting Errors in Microgrid Control with Peak Pricing," Energies, MDPI, vol. 14(9), pages 1-13, April.
    19. Antoine Boche & Clément Foucher & Luiz Fernando Lavado Villa, 2022. "Understanding Microgrid Sustainability: A Systemic and Comprehensive Review," Energies, MDPI, vol. 15(8), pages 1-29, April.
    20. Muhammad Umair Safder & Mohammad J. Sanjari & Ameer Hamza & Rasoul Garmabdari & Md. Alamgir Hossain & Junwei Lu, 2023. "Enhancing Microgrid Stability and Energy Management: Techniques, Challenges, and Future Directions," Energies, MDPI, vol. 16(18), pages 1-28, September.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:248:y:2025:i:c:s0960148125006470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.