IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005981.html
   My bibliography  Save this article

A holistic approach for harnessing multifarious pretreatment techniques and transesterification process optimization of Coelastrella biomass for biodiesel via central composite design

Author

Listed:
  • Yin, Peng
  • Thanh Nguyen, Cong

Abstract

A cost-effective and energy-efficient pretreatment method and solvent system is imperative for economically viable lipid extraction from microalgae. Additionally, optimizing the transesterification process to select optimal parameters that aid in enhanced biodiesel production is also a crucial obstacle. Therefore, the present study compares and optimizes several lipid extraction methods and solvents based on their total lipid extraction efficiency from the test culture Coelastrella sp. using a central composite design (CCD). Further, optimization of acid-catalyzed transesterification parameters was also investigated using CCD, and the produced biodiesel was analyzed for fatty acid composition. Among the methods and solvents, the Soxhlet method and Chloroform: Methanol (2:1) solvent system showed higher lipid recovery at about 24.55 % over other pretreatment methods and solvents studied. CCD optimization reveals that the optimal variables for high lipid recovery are 50 rpm stirring speed, 45 mL chloroform: methanol solvent volume, 80 °C temperature, and 150 min reaction time. Further, the relative abundance of neutral lipids, phospholipids, and glycolipids in the total lipids of the Coelastrella sp. are estimated to be 56.47, 19.42, and 24.10 %, respectively. Acid-catalyzed transesterification process optimization by CCD reveals 120 min reaction time, 80 °C temperature, 11 mL methanol, and 5 % HCl concentration are optimal factors for achieving higher biodiesel yield at about 69 %. Eventually, the fatty acid compositional analysis showed C16:0 and C18:1 as vital fatty acids in the biodiesel at about 20 % and 14.56 %, respectively.

Suggested Citation

  • Yin, Peng & Thanh Nguyen, Cong, 2025. "A holistic approach for harnessing multifarious pretreatment techniques and transesterification process optimization of Coelastrella biomass for biodiesel via central composite design," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005981
    DOI: 10.1016/j.renene.2025.122936
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005981
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122936?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005981. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.