IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v149y2020icp1395-1405.html
   My bibliography  Save this article

Solvent screening and process optimization for high shear-assisted lipid extraction from wet cake of Nannochloropsis sp

Author

Listed:
  • Kwak, Minsoo
  • Kim, Donghyun
  • Kim, Sungwhan
  • Lee, Hansol
  • Chang, Yong Keun

Abstract

Microalgae are regarded as a promising feedstock for biofuels and value-added products but still suffer from an inefficient lipid extraction process. In the present study, a simple and energy-efficient extraction method is demonstrated to extract oil directly from the wet cake (260 g/L) of Nannochloropsis sp. with an assist from the high shear mixer (HSM). After the initial solvent screening, the composition of co-solvent and operating conditions were optimized according to lipid composition and extraction yield. The high shear-assisted extraction process was found to achieve 83% lipid extraction yield (94% for EPA) in 5 min and 95% yield (100% for EPA) in 30 min with minimal amounts of solvents (0.9 ml hexane, 0.39 ml ethanol, and 0.057 ml sulfuric acid for 1 g of wet cell) at 8000 rpm, 55 °C. In comparison with various two-step wet extraction methods, the HSM offers the most economical extraction in terms of specific energy consumption of 1.38 MJ/kg dry cell. Therefore, the HSM can be considered as an attractive alternative to conventional extraction methods, providing a new paradigm of wet extraction for microalgae.

Suggested Citation

  • Kwak, Minsoo & Kim, Donghyun & Kim, Sungwhan & Lee, Hansol & Chang, Yong Keun, 2020. "Solvent screening and process optimization for high shear-assisted lipid extraction from wet cake of Nannochloropsis sp," Renewable Energy, Elsevier, vol. 149(C), pages 1395-1405.
  • Handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1395-1405
    DOI: 10.1016/j.renene.2019.10.133
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148119316301
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2019.10.133?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Tao & Knoshaug, Eric P. & Pienkos, Philip T. & Laurens, Lieve M.L., 2016. "Lipid recovery from wet oleaginous microbial biomass for biofuel production: A critical review," Applied Energy, Elsevier, vol. 177(C), pages 879-895.
    2. Mata, Teresa M. & Martins, António A. & Caetano, Nidia. S., 2010. "Microalgae for biodiesel production and other applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 217-232, January.
    3. Garoma, Temesgen & Janda, Danielle, 2016. "Investigation of the effects of microalgal cell concentration and electroporation, microwave and ultrasonication on lipid extraction efficiency," Renewable Energy, Elsevier, vol. 86(C), pages 117-123.
    4. Park, Ji-Yeon & Lee, Kyubock & Choi, Sun-A & Jeong, Min-Ji & Kim, Bohwa & Lee, Jin-Suk & Oh, You-Kwan, 2015. "Sonication-assisted homogenization system for improved lipid extraction from Chlorella vulgaris," Renewable Energy, Elsevier, vol. 79(C), pages 3-8.
    5. Hita Peña, Estrella & Robles Medina, Alfonso & Jiménez Callejón, María J. & Macías Sánchez, María D. & Esteban Cerdán, Luis & González Moreno, Pedro A. & Molina Grima, Emilio, 2015. "Extraction of free fatty acids from wet Nannochloropsis gaditana biomass for biodiesel production," Renewable Energy, Elsevier, vol. 75(C), pages 366-373.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    2. Vasistha, S. & Khanra, A. & Clifford, M. & Rai, M.P., 2021. "Current advances in microalgae harvesting and lipid extraction processes for improved biodiesel production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    3. Chamkalani, A. & Zendehboudi, S. & Rezaei, N. & Hawboldt, K., 2020. "A critical review on life cycle analysis of algae biodiesel: current challenges and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    4. Preeti Pal & Kit Wayne Chew & Hong-Wei Yen & Jun Wei Lim & Man Kee Lam & Pau Loke Show, 2019. "Cultivation of Oily Microalgae for the Production of Third-Generation Biofuels," Sustainability, MDPI, vol. 11(19), pages 1-16, September.
    5. Maria I. Silva & Ana L. Gonçalves & Vítor J. P. Vilar & José C. M. Pires, 2021. "Experimental and Techno-Economic Study on the Use of Microalgae for Paper Industry Effluents Remediation," Sustainability, MDPI, vol. 13(3), pages 1-29, January.
    6. Bobde, Kiran & Momin, Huda & Bhattacharjee, Ashish & Aikat, Kaustav, 2019. "Energy assessment and enhancement of the lipid yield of indigenous Chlorella sp. KA-24NITD using Taguchi approach," Renewable Energy, Elsevier, vol. 131(C), pages 1226-1235.
    7. Masoud Derakhshandeh & Tahir Atici & Umran Tezcan UN, 2019. "Lipid extraction from microalgae Chlorella and Synechocystis sp. using glass microparticles as disruption enhancer," Energy & Environment, , vol. 30(8), pages 1341-1355, December.
    8. Antonio Franco & Carmen Scieuzo & Rosanna Salvia & Anna Maria Petrone & Elena Tafi & Antonio Moretta & Eric Schmitt & Patrizia Falabella, 2021. "Lipids from Hermetia illucens , an Innovative and Sustainable Source," Sustainability, MDPI, vol. 13(18), pages 1-23, September.
    9. Cancela, A. & Pérez, L. & Febrero, A. & Sánchez, A. & Salgueiro, J.L. & Ortiz, L., 2019. "Exploitation of Nannochloropsis gaditana biomass for biodiesel and pellet production," Renewable Energy, Elsevier, vol. 133(C), pages 725-730.
    10. Joseph Antony Sundarsingh Tensingh & Vijayalakshmi Shankar, 2022. "Sustainable Production of Biodiesel Using UV Mutagenesis as a Strategy to Enhance the Lipid Productivity in R. mucilaginosa," Sustainability, MDPI, vol. 14(15), pages 1-15, July.
    11. Muhammad, Gul & Alam, Md Asraful & Mofijur, M. & Jahirul, M.I. & Lv, Yongkun & Xiong, Wenlong & Ong, Hwai Chyuan & Xu, Jingliang, 2021. "Modern developmental aspects in the field of economical harvesting and biodiesel production from microalgae biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    12. Wang, Meng & Cheng, He & Chen, Shibao & Wen, Shumei & Wu, Xia & Zhang, Dongmei & Yuan, Qipeng & Cong, Wei, 2018. "Microalgal cell disruption via extrusion for the production of intracellular valuables," Energy, Elsevier, vol. 142(C), pages 339-345.
    13. Menegazzo, Mariana Lara & Fonseca, Gustavo Graciano, 2019. "Biomass recovery and lipid extraction processes for microalgae biofuels production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 87-107.
    14. Macías-Sánchez, M.D. & Robles-Medina, A. & Jiménez-Callejón, M.J. & Hita-Peña, E. & Estéban-Cerdán, L. & González-Moreno, P.A. & Navarro-López, E. & Molina-Grima, E., 2018. "Optimization of biodiesel production from wet microalgal biomass by direct transesterification using the surface response methodology," Renewable Energy, Elsevier, vol. 129(PA), pages 141-149.
    15. de Jesus, Sérgio S. & Ferreira, Gabriela F. & Moreira, Larissa S. & Filho, Rubens Maciel, 2020. "Biodiesel production from microalgae by direct transesterification using green solvents," Renewable Energy, Elsevier, vol. 160(C), pages 1283-1294.
    16. Terigar, Beatrice G. & Theegala, Chandra S., 2014. "Investigating the interdependence between cell density, biomass productivity, and lipid productivity to maximize biofuel feedstock production from outdoor microalgal cultures," Renewable Energy, Elsevier, vol. 64(C), pages 238-243.
    17. Baudry, Gino & Delrue, Florian & Legrand, Jack & Pruvost, Jérémy & Vallée, Thomas, 2017. "The challenge of measuring biofuel sustainability: A stakeholder-driven approach applied to the French case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 933-947.
    18. Maity, Jyoti Prakash & Hou, Chia-Peng & Majumder, Dip & Bundschuh, Jochen & Kulp, Thomas R. & Chen, Chien-Yen & Chuang, Lu-Te & Nathan Chen, Ching-Nen & Jean, Jiin-Shuh & Yang, Tsui-Chu & Chen, Chien-, 2014. "The production of biofuel and bioelectricity associated with wastewater treatment by green algae," Energy, Elsevier, vol. 78(C), pages 94-103.
    19. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    20. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:149:y:2020:i:c:p:1395-1405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.