A preliminary investigation into the particle emission characteristics of gasoline compression ignition (GCI) fueling with n-butanol
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2025.122894
Download full text from publisher
As the access to this document is restricted, you may want to
for a different version of it.References listed on IDEAS
- García, Verónica & Päkkilä, Johanna & Ojamo, Heikki & Muurinen, Esa & Keiski, Riitta L., 2011. "Challenges in biobutanol production: How to improve the efficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 964-980, February.
- Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
- David Fernández-Rodríguez & Magín Lapuerta & Lizzie German, 2021. "Progress in the Use of Biobutanol Blends in Diesel Engines," Energies, MDPI, vol. 14(11), pages 1-22, May.
- Thakkar, Kartikkumar & Kachhwaha, Surendra Singh & Kodgire, Pravin & Srinivasan, Seshasai, 2021. "Combustion investigation of ternary blend mixture of biodiesel/n-butanol/diesel: CI engine performance and emission control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
- Wojciech Tutak & Arkadiusz Jamrozik & Karol Grab-Rogaliński, 2023. "Evaluation of Combustion Stability and Exhaust Emissions of a Stationary Compression Ignition Engine Powered by Diesel/n-Butanol and RME Biodiesel/n-Butanol Blends," Energies, MDPI, vol. 16(4), pages 1-29, February.
- Singh, Akhilendra Pratap & Kumar, Vikram & Agarwal, Avinash Kumar, 2020. "Evaluation of comparative engine combustion, performance and emission characteristics of low temperature combustion (PCCI and RCCI) modes," Applied Energy, Elsevier, vol. 278(C).
- Mack, J. Hunter & Schuler, Daniel & Butt, Ryan H. & Dibble, Robert W., 2016. "Experimental investigation of butanol isomer combustion in Homogeneous Charge Compression Ignition (HCCI) engines," Applied Energy, Elsevier, vol. 165(C), pages 612-626.
- Arkadiusz Jamrozik & Wojciech Tutak & Karol Grab-Rogaliński, 2021. "Combustion Stability, Performance and Emission Characteristics of a CI Engine Fueled with Diesel/n-Butanol Blends," Energies, MDPI, vol. 14(10), pages 1-20, May.
- Yanuandri Putrasari & Ocktaeck Lim, 2019. "A Review of Gasoline Compression Ignition: A Promising Technology Potentially Fueled with Mixtures of Gasoline and Biodiesel to Meet Future Engine Efficiency and Emission Targets," Energies, MDPI, vol. 12(2), pages 1-27, January.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- José Javier López & Oscar A. de la Garza & Joaquín De la Morena & Simón Martínez-Martínez, 2021. "Influence of Cavitation in Common-Rail Diesel Nozzles on the Soot Formation Process through Measuring Soot Emissions," Energies, MDPI, vol. 14(19), pages 1-11, October.
- Tipanluisa, Luis & Prati, Maria Vittoria & Costagliola, Maria Antonietta, 2024. "Impact of diesel/renewable fuels blend on gaseous and particle emissions of a light-duty vehicle under real driving emissions," Renewable Energy, Elsevier, vol. 230(C).
- Karol Tucki & Olga Orynycz & Andrzej Wasiak & Antoni Świć & Remigiusz Mruk & Katarzyna Botwińska, 2020. "Estimation of Carbon Dioxide Emissions from a Diesel Engine Powered by Lignocellulose Derived Fuel for Better Management of Fuel Production," Energies, MDPI, vol. 13(3), pages 1-29, January.
- Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
- Peng, Wan-feng & Huang, Chao & Chen, Xue-fang & Xiong, Lian & Chen, Xin-de & Chen, Yong & Ma, Long-long, 2013. "Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis," Renewable Energy, Elsevier, vol. 55(C), pages 31-34.
- Myroslav Kindrachuk & Dmytro Volchenko & Alexander Balitskii & Karol F. Abramek & Mykola Volchenko & Olexiy Balitskii & Vasyl Skrypnyk & Dmytro Zhuravlev & Alina Yurchuk & Valerii Kolesnikov, 2021. "Wear Resistance of Spark Ignition Engine Piston Rings in Hydrogen-Containing Environments," Energies, MDPI, vol. 14(16), pages 1-13, August.
- Li, Jianzheng & Wang, Xin & Fan, Yiyang & Chen, Qiyi & Meng, Jia, 2024. "Biosynthesis of NPs CuS/Cu2S and self-assembly with C. beijerinckii for improving lignocellulosic butanol production in staged butyrate-butanol fermentation process," Renewable Energy, Elsevier, vol. 224(C).
- Hossain, Abul Kalam & Sharma, Vikas & Serrano, Clara & Krishnasamy, Anand & Ganesh, Duraisamy, 2024. "Production of biofuel from AD digestate waste and their combustion characteristics in a low-speed diesel engine," Renewable Energy, Elsevier, vol. 222(C).
- Kim, Jun-Soo & Choi, Jae-Hyuk, 2023. "Feasibility study on bio-heavy fuel as an alternative for marine fuel," Renewable Energy, Elsevier, vol. 219(P2).
- García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
- Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
- Li, Xiaoyan & Zhen, Xudong & Wang, Yang & Tian, Zhi, 2022. "Numerical comparative study on performance and emissions characteristics fueled with methanol, ethanol and methane in high compression spark ignition engine," Energy, Elsevier, vol. 254(PA).
- Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
- Mao, Dongxu & Ghadikolaei, Meisam Ahmadi & Cheung, Chun Shun & Shen, Zhaojie & Cui, Wenzheng & Wong, Pak Kin, 2020. "Influence of alternative fuels on the particulate matter micro and nano-structures, volatility and oxidation reactivity in a compression ignition engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
- Chen, Longfei & Ding, Shirun & Liu, Haoye & Lu, Yiji & Li, Yanfei & Roskilly, Anthony Paul, 2017. "Comparative study of combustion and emissions of kerosene (RP-3), kerosene-pentanol blends and diesel in a compression ignition engine," Applied Energy, Elsevier, vol. 203(C), pages 91-100.
- Yuanxu Li & Zhi Ning & Chia-fon F. Lee & Timothy H. Lee & Junhao Yan, 2018. "Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends," Energies, MDPI, vol. 11(5), pages 1-16, May.
- Zhao, Wenbin & Mi, Shijie & Wu, Haoqing & Zhang, Yaoyuan & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2022. "Towards a comprehensive understanding of mode transition between biodiesel-biobutanol dual-fuel ICCI low temperature combustion and conventional CI combustion - Part ΙΙ: A system optimization at low l," Energy, Elsevier, vol. 241(C).
- Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
- Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
- Luiz Filipe Paiva Brandão & Jez Willian Batista Braga & Paulo Anselmo Ziani Suarez, 2020. "Alternative butanol/gasoline and butanol/diesel fuel blends: An analysis of the interdependence between physical-chemical properties by a multivariate principal component analysis model," Energy & Environment, , vol. 31(5), pages 733-754, August.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005567. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.