IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v55y2013icp31-34.html
   My bibliography  Save this article

Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis

Author

Listed:
  • Peng, Wan-feng
  • Huang, Chao
  • Chen, Xue-fang
  • Xiong, Lian
  • Chen, Xin-de
  • Chen, Yong
  • Ma, Long-long

Abstract

In this work, microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis was carried out for the first time. Wastewater with high COD generated from butanol fermentation mainly contained acetic acid, butyric acid and residual sugars (xylose and arabinose). Without any pretreatment and adding nutrients (nitrogen sources and trace elements), this wastewater was utilized by oleaginous yeast T. dermatis for microbial oil production. After five days' fermentation, the COD of this wastewater has been removed for about 68%, and the highest biomass and lipid content of T. dermatis were 7.4 g/l and 13.5% respectively. This bioconversion could both solve the environmental problem and offer low-cost lipid feedstock for biodiesel production.

Suggested Citation

  • Peng, Wan-feng & Huang, Chao & Chen, Xue-fang & Xiong, Lian & Chen, Xin-de & Chen, Yong & Ma, Long-long, 2013. "Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis," Renewable Energy, Elsevier, vol. 55(C), pages 31-34.
  • Handle: RePEc:eee:renene:v:55:y:2013:i:c:p:31-34
    DOI: 10.1016/j.renene.2012.12.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112007811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.12.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Verónica & Päkkilä, Johanna & Ojamo, Heikki & Muurinen, Esa & Keiski, Riitta L., 2011. "Challenges in biobutanol production: How to improve the efficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 964-980, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ling, Jiayin & Nip, Saiwa & de Toledo, Renata Alves & Tian, Yuan & Shim, Hojae, 2016. "Evaluation of specific lipid production and nutrients removal from wastewater by Rhodosporidium toruloides and biodiesel production from wet biomass via microwave irradiation," Energy, Elsevier, vol. 108(C), pages 185-194.
    2. Ling, Jiayin & Tian, Yuan & de Toledo, Renata Alves & Shim, Hojae, 2017. "Cost reduction for the lipid production from distillery and domestic mixed wastewater by Rhodosporidium toruloides via the reutilization of spent seed culture medium," Energy, Elsevier, vol. 136(C), pages 135-141.
    3. Alejandra Sánchez-Solís & Odette Lobato-Calleros & Rubén Moreno-Terrazas & Patricia Lappe-Oliveras & Elier Neri-Torres, 2024. "Biodiesel Production Processes with Yeast: A Sustainable Approach," Energies, MDPI, vol. 17(2), pages 1-37, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    2. Yuanxu Li & Zhi Ning & Chia-fon F. Lee & Timothy H. Lee & Junhao Yan, 2018. "Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends," Energies, MDPI, vol. 11(5), pages 1-16, May.
    3. Tsai, Tsung-Yu & Lo, Yung-Chung & Dong, Cheng-Di & Nagarajan, Dillirani & Chang, Jo-Shu & Lee, Duu-Jong, 2020. "Biobutanol production from lignocellulosic biomass using immobilized Clostridium acetobutylicum," Applied Energy, Elsevier, vol. 277(C).
    4. Čuček, Lidija & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír & Kravanja, Zdravko, 2012. "Total footprints-based multi-criteria optimisation of regional biomass energy supply chains," Energy, Elsevier, vol. 44(1), pages 135-145.
    5. Luiz Filipe Paiva Brandão & Jez Willian Batista Braga & Paulo Anselmo Ziani Suarez, 2020. "Alternative butanol/gasoline and butanol/diesel fuel blends: An analysis of the interdependence between physical-chemical properties by a multivariate principal component analysis model," Energy & Environment, , vol. 31(5), pages 733-754, August.
    6. Li, Yuanxu & Ning, Zhi & Lee, Chia-fon F. & Yan, Junhao & Lee, Timothy H., 2019. "Effect of acetone-butanol-ethanol (ABE)–gasoline blends on regulated and unregulated emissions in spark-ignition engine," Energy, Elsevier, vol. 168(C), pages 1157-1167.
    7. Li, Yuqiang & Meng, Lei & Nithyanandan, Karthik & Lee, Timothy H. & Lin, Yilu & Lee, Chia-fon F. & Liao, Shengming, 2017. "Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends," Energy, Elsevier, vol. 121(C), pages 43-54.
    8. Wu, Han & Nithyanandan, Karthik & Zhang, Jiaxiang & Lin, Yilu & Lee, Timothy H. & Lee, Chia-fon F. & Zhang, Chunhua, 2015. "Impacts of Acetone–Butanol–Ethanol (ABE) ratio on spray and combustion characteristics of ABE–diesel blends," Applied Energy, Elsevier, vol. 149(C), pages 367-378.
    9. Ebrahimian, Farinaz & Karimi, Keikhosro & Angelidaki, Irini, 2022. "Coproduction of hydrogen, butanol, butanediol, ethanol, and biogas from the organic fraction of municipal solid waste using bacterial cocultivation followed by anaerobic digestion," Renewable Energy, Elsevier, vol. 194(C), pages 552-560.
    10. Kujawska, Anna & Kujawski, Jan & Bryjak, Marek & Kujawski, Wojciech, 2015. "ABE fermentation products recovery methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 648-661.
    11. Gottumukkala, Lalitha Devi & Haigh, Kate & Görgens, Johann, 2017. "Trends and advances in conversion of lignocellulosic biomass to biobutanol: Microbes, bioprocesses and industrial viability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 963-973.
    12. Ibrahim, Mohamad Faizal & Abd-Aziz, Suraini & Yusoff, Mohd. Ezreeza Mohamed & Phang, Lai Yee & Hassan, Mohd Ali, 2015. "Simultaneous enzymatic saccharification and ABE fermentation using pretreated oil palm empty fruit bunch as substrate to produce butanol and hydrogen as biofuel," Renewable Energy, Elsevier, vol. 77(C), pages 447-455.
    13. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    14. Melts, Indrek & Ivask, Mari & Geetha, Mohan & Takeuchi, Kazuhiko & Heinsoo, Katrin, 2019. "Combining bioenergy and nature conservation: An example in wetlands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 293-302.
    15. Ibrahim, Mohamad Faizal & Ramli, Norhayati & Kamal Bahrin, Ezyana & Abd-Aziz, Suraini, 2017. "Cellulosic biobutanol by Clostridia: Challenges and improvements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1241-1254.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:55:y:2013:i:c:p:31-34. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.