IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v246y2025ics0960148125005269.html
   My bibliography  Save this article

Research on integrative optimization operation of seawater heat pump, photovoltaic, and cross-seasonal heat storage systems

Author

Listed:
  • Jia, Xin
  • Chen, Hu
  • Yang, Yingxia
  • Xu, Ce
  • Duanmu, Lin
  • Wang, Zhichao

Abstract

This paper proposes a novel system that integrates seawater heat pump, photovoltaic, and cross-seasonal heat storage systems for heating, cooling, and power supply. This novel system will be applied to promote the achievement of the "zero carbon" goal and solve the problem of seasonal mismatch and instability between the power demand of heat pumps and photovoltaic power generation. This paper seeks to assess the feasibility of achieving or approaching 'zero carbon' with this innovative system, and the dynamic simulation models were established based on TRNSYS software. Research findings show that having surplus photovoltaic electricity immediately utilized by surrounding users is more beneficial than engaging in cross-seasonal storage of excess photovoltaic generation. However, cross-seasonal energy storage is recommended to reduce dependence on the power grid and improve the flexibility of power grid regulation. It is worth noting that daily thermal storage is recommended for winter, using a small thermal storage water tank. Taking a public building with a floor area of 25,185 m2 as an example, the optimization parameters of the system, aimed at minimizing the annual cost, include: the photovoltaic panel area is 20400 m2, the volume of the thermal storage water body is 29000 m3, the proportion of heating provided by thermal storage water body is 89.29 %, the net carbon reduction rate is 75.59 %, and the investment payback period is 7.41 years, and the novel system is feasible.

Suggested Citation

  • Jia, Xin & Chen, Hu & Yang, Yingxia & Xu, Ce & Duanmu, Lin & Wang, Zhichao, 2025. "Research on integrative optimization operation of seawater heat pump, photovoltaic, and cross-seasonal heat storage systems," Renewable Energy, Elsevier, vol. 246(C).
  • Handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005269
    DOI: 10.1016/j.renene.2025.122864
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005269
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122864?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    2. Jin Wu & Jiangjiang Wang & Jing Wu & Chaofan Ma, 2019. "Exergy and Exergoeconomic Analysis of a Combined Cooling, Heating, and Power System Based on Solar Thermal Biomass Gasification," Energies, MDPI, vol. 12(12), pages 1-19, June.
    3. Qi, Cuiting & Zhou, Renjie & Zhan, Hongbin, 2023. "Analysis of heat transfer in an aquifer thermal energy storage system: On the role of two-dimensional thermal conduction," Renewable Energy, Elsevier, vol. 217(C).
    4. Guo, Shaopeng & Liu, Qibin & Sun, Jie & Jin, Hongguang, 2018. "A review on the utilization of hybrid renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1121-1147.
    5. Lyden, A. & Brown, C.S. & Kolo, I. & Falcone, G. & Friedrich, D., 2022. "Seasonal thermal energy storage in smart energy systems: District-level applications and modelling approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    6. Ioan Sarbu & Calin Sebarchievici, 2018. "A Comprehensive Review of Thermal Energy Storage," Sustainability, MDPI, vol. 10(1), pages 1-32, January.
    7. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Wang, Lincheng & Jing, Heran, 2022. "Operation mode performance and optimization of a novel coupled air and ground source heat pump system with energy storage: Case study of a hotel building," Renewable Energy, Elsevier, vol. 201(P1), pages 889-903.
    8. Qiu, Guodong & Li, Kuangfu & Cai, Weihua & Yu, Shipeng, 2023. "Optimization of an integrated system including a photovoltaic/thermal system and a ground source heat pump system for building energy supply in cold areas," Applied Energy, Elsevier, vol. 349(C).
    9. Kou, Xiaoxue & Wang, Ruzhu, 2023. "Thermodynamic analysis of electric to thermal heating pathways coupled with thermal energy storage," Energy, Elsevier, vol. 284(C).
    10. Cavazzuti, Marco & Bottarelli, Michele, 2023. "Performance analysis of a multi-source renewable energy system for temperature control in buildings of varied thermal transmittance and climate zone," Renewable and Sustainable Energy Reviews, Elsevier, vol. 187(C).
    11. Bai, Yakai & Wang, Zhifeng & Fan, Jianhua & Yang, Ming & Li, Xiaoxia & Chen, Longfei & Yuan, Guofeng & Yang, Junfeng, 2020. "Numerical and experimental study of an underground water pit for seasonal heat storage," Renewable Energy, Elsevier, vol. 150(C), pages 487-508.
    12. Wang, Jiangjiang & Ma, Chaofan & Wu, Jing, 2019. "Thermodynamic analysis of a combined cooling, heating and power system based on solar thermal biomass gasification☆," Applied Energy, Elsevier, vol. 247(C), pages 102-115.
    13. Calise, Francesco & Cappiello, Francesco Liberato & Cimmino, Luca & Dentice d’Accadia, Massimo & Vicidomini, Maria, 2023. "A comparative thermoeconomic analysis of fourth generation and fifth generation district heating and cooling networks," Energy, Elsevier, vol. 284(C).
    14. Zhang, Guoqing & Wang, Jiangjiang & Ren, Fukang & Liu, Yi & Dong, Fuxiang, 2021. "Collaborative optimization for multiple energy stations in distributed energy network based on electricity and heat interchanges," Energy, Elsevier, vol. 222(C).
    15. Yang, Weibo & Zhang, Yu & Wang, Feng & Liu, Aihua, 2023. "Experimental and numerical investigations on operation characteristics of seasonal borehole underground thermal energy storage," Renewable Energy, Elsevier, vol. 217(C).
    16. Kun Sang Lee, 2010. "A Review on Concepts, Applications, and Models of Aquifer Thermal Energy Storage Systems," Energies, MDPI, vol. 3(6), pages 1-15, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Brown, C.S. & Kolo, I. & Lyden, A. & Franken, L. & Kerr, N. & Marshall-Cross, D. & Watson, S. & Falcone, G. & Friedrich, D. & Diamond, J., 2024. "Assessing the technical potential for underground thermal energy storage in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Zhou, Yuan & Wang, Jiangjiang & Dong, Fuxiang & Qin, Yanbo & Ma, Zherui & Ma, Yanpeng & Li, Jianqiang, 2021. "Novel flexibility evaluation of hybrid combined cooling, heating and power system with an improved operation strategy," Applied Energy, Elsevier, vol. 300(C).
    3. Ahmed M. Salem & Harnek S. Dhami & Manosh C. Paul, 2022. "Syngas Production and Combined Heat and Power from Scottish Agricultural Waste Gasification—A Computational Study," Sustainability, MDPI, vol. 14(7), pages 1-18, March.
    4. Andrés Villarruel-Jaramillo & Manuel Pérez-García & José M. Cardemil & Rodrigo A. Escobar, 2021. "Review of Polygeneration Schemes with Solar Cooling Technologies and Potential Industrial Applications," Energies, MDPI, vol. 14(20), pages 1-30, October.
    5. Han, Zhonghe & Zhang, Jiahui & Zhang, Han, 2025. "Optimization design research of combined cooling, heating, and power system based on novel redundancy strategies," Energy, Elsevier, vol. 316(C).
    6. Ge, Yongkai & Ma, Yue & Wang, Qingrui & Yang, Qing & Xing, Lu & Ba, Shusong, 2023. "Techno-economic-environmental assessment and performance comparison of a building distributed multi-energy system under various operation strategies," Renewable Energy, Elsevier, vol. 204(C), pages 685-696.
    7. Amaya Martínez-Gracia & Sergio Usón & Mª Teresa Pintanel & Javier Uche & Ángel A. Bayod-Rújula & Alejandro Del Amo, 2021. "Exergy Assessment and Thermo-Economic Analysis of Hybrid Solar Systems with Seasonal Storage and Heat Pump Coupling in the Social Housing Sector in Zaragoza," Energies, MDPI, vol. 14(5), pages 1-32, February.
    8. Ren, Fukang & Lin, Xiaozhen & Wei, Ziqing & Zhai, Xiaoqiang & Yang, Jianrong, 2022. "A novel planning method for design and dispatch of hybrid energy systems," Applied Energy, Elsevier, vol. 321(C).
    9. Ahmadfard, Mohammadamin & Baniasadi, Ehsan, 2025. "Borehole thermal energy storage systems: A comprehensive review using bibliometric and qualitative tools," Applied Energy, Elsevier, vol. 387(C).
    10. Lédée, François & Evins, Ralph, 2024. "A comparison of 4th and 5th generation thermal networks with energy hub," Energy, Elsevier, vol. 311(C).
    11. Hossein Nami & Amjad Anvari-Moghaddam & Ahmad Arabkoohsar, 2020. "Thermodynamic, Economic, and Environmental Analyses of a Waste-Fired Trigeneration Plant," Energies, MDPI, vol. 13(10), pages 1-18, May.
    12. Zhao, Xiangming & Liu, Yuan & He, Maogang & Guo, Jianxiang, 2025. "Comprehensive optimization of combined cooling, heating, and power hybrid renewable multienergy system based on enhanced implementation feasibility," Renewable Energy, Elsevier, vol. 245(C).
    13. Diana L. Tinoco Caicedo & Myrian Santos Torres & Medelyne Mero-Benavides & Oscar Patiño Lopez & Alexis Lozano Medina & Ana M. Blanco Marigorta, 2023. "Simulation and Exergoeconomic Analysis of a Trigeneration System Based on Biofuels from Spent Coffee Grounds," Energies, MDPI, vol. 16(4), pages 1-17, February.
    14. Wei, Wenqi & Yue, Han & Huang, Jiguang & Zhang, Heng & Liu, Haowen & Chen, Haiping & Cheng, Chao, 2025. "Performance analysis and optimization of photovoltaic thermal coupled ground source heat pump system," Energy, Elsevier, vol. 319(C).
    15. Wang, Jiangjiang & Han, Zepeng & Guan, Zhimin, 2020. "Hybrid solar-assisted combined cooling, heating, and power systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    16. Ruijin Zhu & Weilin Guo & Xuejiao Gong, 2019. "Short-Term Load Forecasting for CCHP Systems Considering the Correlation between Heating, Gas and Electrical Loads Based on Deep Learning," Energies, MDPI, vol. 12(17), pages 1-18, August.
    17. Wang, Yubo & Quan, Zhenhua & Zhao, Yaohua & Rosengarten, Gary & Mojiri, Ahmad, 2025. "Feasibility and performance of coupled air-ground source heat pump systems with thermal storage," Energy, Elsevier, vol. 315(C).
    18. Ma, Zherui & Dong, Fuxiang & Wang, Jiangjiang & Zhou, Yuan & Feng, Yingsong, 2023. "Optimal design of a novel hybrid renewable energy CCHP system considering long and short-term benefits," Renewable Energy, Elsevier, vol. 206(C), pages 72-85.
    19. Tian-Tian Li & Yun-Ze Li & Zhuang-Zhuang Zhai & En-Hui Li & Tong Li, 2019. "Energy-Saving Strategies and their Energy Analysis and Exergy Analysis for In Situ Thermal Remediation System of Polluted-Soil," Energies, MDPI, vol. 12(20), pages 1-28, October.
    20. Sifnaios, Ioannis & Sneum, Daniel Møller & Jensen, Adam R. & Fan, Jianhua & Bramstoft, Rasmus, 2023. "The impact of large-scale thermal energy storage in the energy system," Applied Energy, Elsevier, vol. 349(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:246:y:2025:i:c:s0960148125005269. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.