IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v245y2025ics0960148125005270.html
   My bibliography  Save this article

Optimization of biomethane production from purified biowaste pyrolysis gas: A comparative techno-economic assessment

Author

Listed:
  • Brands, Marvin B.
  • Beuel, Patrick
  • Torres-Rivera, Felipe
  • Beckmüller, Robin
  • Ayoub, Mazloum Sheikh
  • Stenzel, Peter

Abstract

This study investigates a novel pathway for biomethane production by converting biogenic residues into product gas through pyrolysis, water-gas shift reaction, and microbial methanogenesis. A key challenge in this process is gas purification, as the product gas must meet certain requirements for grid feed-in while ensuring economic feasibility. Unlike conventional biomethane production via anaerobic digestion in biogas plants, this approach enables the utilization of recalcitrant biogenic residues while minimizing process-immanent limitations. The research integrates gas purification with a techno-economic assessment, focusing on achieving a higher H2/CO2 ratio through CO2 removal, thereby minimizing additional hydrogen demand. A unique case study demonstrates that expanding the process with a scrubbing unit reduces hydrogen procurement costs by approximately 51 %, achieving the lowest levelized cost of biomethane at 143 €/MWh. Sensitivity analysis reveals that hydrogen price is the most critical factor for economic feasibility, while electricity price has minor impact. The findings provide actionable insights for scaling biomethane production from biogenic residues via pyrolysis, offering a promising alternative to conventional biogas upgrading. The study highlights the crucial role of tailored gas purification strategies and recommends scrubbing units as a key component for future industrial applications.

Suggested Citation

  • Brands, Marvin B. & Beuel, Patrick & Torres-Rivera, Felipe & Beckmüller, Robin & Ayoub, Mazloum Sheikh & Stenzel, Peter, 2025. "Optimization of biomethane production from purified biowaste pyrolysis gas: A comparative techno-economic assessment," Renewable Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125005270
    DOI: 10.1016/j.renene.2025.122865
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148125005270
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2025.122865?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Katja Oehmichen & Stefan Majer & Daniela Thrän, 2021. "Biomethane from Manure, Agricultural Residues and Biowaste—GHG Mitigation Potential from Residue-Based Biomethane in the European Transport Sector," Sustainability, MDPI, vol. 13(24), pages 1-14, December.
    2. Lombardi, Lidia & Francini, Giovanni, 2020. "Techno-economic and environmental assessment of the main biogas upgrading technologies," Renewable Energy, Elsevier, vol. 156(C), pages 440-458.
    3. Collet, Pierre & Flottes, Eglantine & Favre, Alain & Raynal, Ludovic & Pierre, Hélène & Capela, Sandra & Peregrina, Carlos, 2017. "Techno-economic and Life Cycle Assessment of methane production via biogas upgrading and power to gas technology," Applied Energy, Elsevier, vol. 192(C), pages 282-295.
    4. Hongfang Chen & Yin Wang & Guangwen Xu & Kunio Yoshikawa, 2012. "Fuel-N Evolution during the Pyrolysis of Industrial Biomass Wastes with High Nitrogen Content," Energies, MDPI, vol. 5(12), pages 1-21, December.
    5. Chen, Wei-Hsin & Chen, Chia-Yang, 2020. "Water gas shift reaction for hydrogen production and carbon dioxide capture: A review," Applied Energy, Elsevier, vol. 258(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bidart, Christian & Wichert, Martin & Kolb, Gunther & Held, Michael, 2022. "Biogas catalytic methanation for biomethane production as fuel in freight transport - A carbon footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Ghafoori, Mohammad Samim & Loubar, Khaled & Marin-Gallego, Mylène & Tazerout, Mohand, 2022. "Techno-economic and sensitivity analysis of biomethane production via landfill biogas upgrading and power-to-gas technology," Energy, Elsevier, vol. 239(PB).
    3. Godoy, Verónica & Martín-Lara, María Ángeles & Garcia-Garcia, Guillermo & Arjandas, Sunil & Calero, Mónica, 2024. "Environmental impact assessment of the production of biomethane from landfill biogas and its use as vehicle fuel," Renewable Energy, Elsevier, vol. 237(PB).
    4. Muhamed Rasit Atelge & Halil Senol & Mohammed Djaafri & Tulin Avci Hansu & David Krisa & Abdulaziz Atabani & Cigdem Eskicioglu & Hamdi Muratçobanoğlu & Sebahattin Unalan & Slimane Kalloum & Nuri Azbar, 2021. "A Critical Overview of the State-of-the-Art Methods for Biogas Purification and Utilization Processes," Sustainability, MDPI, vol. 13(20), pages 1-39, October.
    5. Mancini, G. & Lombardi, L. & Luciano, A. & Bolzonella, D. & Viotti, P. & Fino, D., 2024. "A reduction in global impacts through a waste-wastewater-energy nexus: A life cycle assessment," Energy, Elsevier, vol. 289(C).
    6. D’Adamo, Idiano & Falcone, Pasquale Marcello & Huisingh, Donald & Morone, Piergiuseppe, 2021. "A circular economy model based on biomethane: What are the opportunities for the municipality of Rome and beyond?," Renewable Energy, Elsevier, vol. 163(C), pages 1660-1672.
    7. Wang, Shuaibing & Lin, Haitao & Abed, Azher M. & Mahariq, Ibrahim & Ayed, Hamdi & Mouldi, Abir & Lin, Zhixiang, 2024. "Life cycle analysis of biowaste-to- biogas/biomethane processes: Cost and environmental assessment of four different biowaste scenarios organic fraction of municipal solid waste and secondary sewage s," Energy, Elsevier, vol. 308(C).
    8. Engstam, Linus & Janke, Leandro & Sundberg, Cecilia & Nordberg, Åke, 2025. "Optimising power-to-gas integration with wastewater treatment and biogas: A techno-economic assessment of CO2 and by-product utilisation," Applied Energy, Elsevier, vol. 377(PB).
    9. Jun Sheng Teh & Yew Heng Teoh & Heoy Geok How & Thanh Danh Le & Yeoh Jun Jie Jason & Huu Tho Nguyen & Dong Lin Loo, 2021. "The Potential of Sustainable Biomass Producer Gas as a Waste-to-Energy Alternative in Malaysia," Sustainability, MDPI, vol. 13(7), pages 1-31, April.
    10. Hijazi, O. & Abdelsalam, E. & Samer, M. & Attia, Y.A. & Amer, B.M.A. & Amer, M.A. & Badr, M. & Bernhardt, H., 2020. "Life cycle assessment of the use of nanomaterials in biogas production from anaerobic digestion of manure," Renewable Energy, Elsevier, vol. 148(C), pages 417-424.
    11. Medina, Oscar E. & Amell, Andrés A. & López, Diana & Santamaría, Alexander, 2025. "Comprehensive review of nickel-based catalysts advancements for CO2 methanation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 207(C).
    12. Victor Hugo Souza de Abreu & Victória Gonçalves Ferreira Pereira & Laís Ferreira Crispino Proença & Fabio Souza Toniolo & Andrea Souza Santos, 2023. "A Systematic Study on Techno-Economic Evaluation of Hydrogen Production," Energies, MDPI, vol. 16(18), pages 1-23, September.
    13. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    14. Wei, Ranran & Yin, Kexin & Zhang, Runqi & Xu, Wenwu & Zhu, Zhaoyou & Wang, Yinglong & Cui, Peizhe, 2025. "Techno-economic and thermodynamic analysis of hydrogen production process via plasma co-gasification of coal and biomass," Energy, Elsevier, vol. 314(C).
    15. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    16. Zhu, Xianqing & Xu, Mian & Hu, Shiyang & Xia, Ao & Huang, Yun & Luo, Zhang & Xue, Xiao & Zhou, Yao & Zhu, Xun & Liao, Qiang, 2024. "A novel spent LiNixCoyMn1−x−yO2 battery-modified mesoporous Al2O3 catalyst for H2-rich syngas production from catalytic steam co-gasification of pinewood sawdust and polyethylene," Applied Energy, Elsevier, vol. 367(C).
    17. Millinger, M. & Reichenberg, L. & Hedenus, F. & Berndes, G. & Zeyen, E. & Brown, T., 2022. "Are biofuel mandates cost-effective? - An analysis of transport fuels and biomass usage to achieve emissions targets in the European energy system," Applied Energy, Elsevier, vol. 326(C).
    18. Singlitico, Alessandro & Goggins, Jamie & Monaghan, Rory F.D., 2019. "The role of life cycle assessment in the sustainable transition to a decarbonised gas network through green gas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 16-28.
    19. Mohammadpour, Hossein & Cord-Ruwisch, Ralf & Pivrikas, Almantas & Ho, Goen, 2022. "Simple energy-efficient electrochemically-driven CO2 scrubbing for biogas upgrading," Renewable Energy, Elsevier, vol. 195(C), pages 274-282.
    20. Alessia Amato & Konstantina Tsigkou & Alessandro Becci & Francesca Beolchini & Nicolò M. Ippolito & Francesco Ferella, 2023. "Life Cycle Assessment of Biomethane vs. Fossil Methane Production and Supply," Energies, MDPI, vol. 16(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:245:y:2025:i:c:s0960148125005270. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.