IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v241y2025ics096014812402367x.html
   My bibliography  Save this article

A numerical proof of the Betz–Joukowsky limit

Author

Listed:
  • Bontempo, R.
  • Manna, M.

Abstract

According to the Betz–Joukowsky limit, the maximum power coefficient of a wind turbine is 16/27. This limit is obtained assuming a priori that the disk is radially uniformly-loaded. In other words, the proof of the limit does not evaluate the optimum type of the load distribution, but it directly speculates that radially uniform load is the optimal one. Therefore, it should be questioned if a radially varying load with a power coefficient higher than 16/27 exists, which overrules the Betz–Joukowsky limit. For this reason, the paper presents, for the first time, an original numerical optimisation strategy aimed at proving, with a prescribed accuracy level, the validity of the Betz–Joukowsky limit, i.e., at verifying whether or not the optimal load distribution is uniform. The proposed strategy combines a Computational-Fluid-Dynamic-Actuator-Disk model with a classical gradient-based optimisation algorithm. The former aims at computing the objective function (i.e., the power coefficient), whereas the latter is devoted to the detection of the optimum. The procedure assumes that the load distribution is a real analytic function, while the optimisation variables are the coefficients of its Taylor polynomial. The proposed methodology is thoroughly verified, and its overall accuracy level is quantified. Up to an 8th-degree Taylor polynomial, the outcome of the numerical optimisation procedure differs from the Betz–Joukowsky solution by a quantity equal to the uncertainty of the adopted computational strategy. In other words, within the given accuracy range, the analysis confirms the validity of the Betz–Joukowsky limit based on the radially uniform load. Finally, it should be stressed that if the actual optimum differed from the Betz–Joukowsky limit by an amount less than the accuracy of the adopted numerical method, then that optimum could not be detected by the proposed procedure.

Suggested Citation

  • Bontempo, R. & Manna, M., 2025. "A numerical proof of the Betz–Joukowsky limit," Renewable Energy, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402367x
    DOI: 10.1016/j.renene.2024.122299
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812402367X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122299?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. José Genaro González-Hernández & Rubén Salas-Cabrera, 2021. "Maximum Power Coefficient Analysis in Wind Energy Conversion Systems: Questioning, Findings, and New Perspective," Mathematical Problems in Engineering, Hindawi, vol. 2021, pages 1-7, July.
    2. De Lellis, Marcelo & Reginatto, Romeu & Saraiva, Ramiro & Trofino, Alexandre, 2018. "The Betz limit applied to Airborne Wind Energy," Renewable Energy, Elsevier, vol. 127(C), pages 32-40.
    3. Vennell, Ross, 2013. "Exceeding the Betz limit with tidal turbines," Renewable Energy, Elsevier, vol. 55(C), pages 277-285.
    4. Bontempo, R. & Manna, M., 2020. "Diffuser augmented wind turbines: Review and assessment of theoretical models," Applied Energy, Elsevier, vol. 280(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marzec, Łukasz & Buliński, Zbigniew & Krysiński, Tomasz, 2021. "Fluid structure interaction analysis of the operating Savonius wind turbine," Renewable Energy, Elsevier, vol. 164(C), pages 272-284.
    2. Shaikh Zishan & Altaf Hossain Molla & Haroon Rashid & Kok Hoe Wong & Ahmad Fazlizan & Molla Shahadat Hossain Lipu & Mohd Tariq & Omar Mutab Alsalami & Mahidur R. Sarker, 2023. "Comprehensive Analysis of Kinetic Energy Recovery Systems for Efficient Energy Harnessing from Unnaturally Generated Wind Sources," Sustainability, MDPI, vol. 15(21), pages 1-18, October.
    3. Hesami, Ali & Nikseresht, Amir H., 2023. "Towards development and optimization of the Savonius wind turbine incorporated with a wind-lens," Energy, Elsevier, vol. 274(C).
    4. Patel, Vimal & Eldho, T.I. & Prabhu, S.V., 2019. "Velocity and performance correction methodology for hydrokinetic turbines experimented with different geometry of the channel," Renewable Energy, Elsevier, vol. 131(C), pages 1300-1317.
    5. Goude, Anders & Ågren, Olov, 2014. "Simulations of a vertical axis turbine in a channel," Renewable Energy, Elsevier, vol. 63(C), pages 477-485.
    6. Stephen Nash & Agnieszka I. Olbert & Michael Hartnett, 2015. "Towards a Low-Cost Modelling System for Optimising the Layout of Tidal Turbine Arrays," Energies, MDPI, vol. 8(12), pages 1-19, November.
    7. André F. C. Pereira & João M. M. Sousa, 2022. "A Review on Crosswind Airborne Wind Energy Systems: Key Factors for a Design Choice," Energies, MDPI, vol. 16(1), pages 1-40, December.
    8. Vennell, Ross & Funke, Simon W. & Draper, Scott & Stevens, Craig & Divett, Tim, 2015. "Designing large arrays of tidal turbines: A synthesis and review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 454-472.
    9. Dogru, Safak & Yilmaz, Oktay, 2024. "Extensive design and aerodynamic performance investigation of diffuser augmented wind turbine (DAWT) guided by generalized actuator disc theory," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    10. He, Kai & Vinod, Ashwin & Banerjee, Arindam, 2022. "Enhancement of energy capture by flow induced motion of a circular cylinder using passive turbulence control: Decoupling strip thickness and roughness effects," Renewable Energy, Elsevier, vol. 200(C), pages 283-293.
    11. Megan K. Seibert & William E. Rees, 2021. "Through the Eye of a Needle: An Eco-Heterodox Perspective on the Renewable Energy Transition," Energies, MDPI, vol. 14(15), pages 1-19, July.
    12. Chen, Yaling & Lin, Binliang & Lin, Jie & Wang, Shujie, 2017. "Experimental study of wake structure behind a horizontal axis tidal stream turbine," Applied Energy, Elsevier, vol. 196(C), pages 82-96.
    13. Zhang, Yajuan & Wang, Zheng & Li, Shuangcheng, 2024. "Can a new power system help maintain planetary boundaries within a safe operating space?," Energy, Elsevier, vol. 304(C).
    14. Neill, Simon P. & Vögler, Arne & Goward-Brown, Alice J. & Baston, Susana & Lewis, Matthew J. & Gillibrand, Philip A. & Waldman, Simon & Woolf, David K., 2017. "The wave and tidal resource of Scotland," Renewable Energy, Elsevier, vol. 114(PA), pages 3-17.
    15. Mendes, Rafael C.F. & Chapui, Benoit & Oliveira, Taygoara F. & Noguera, Ricardo & Brasil, Antonio C.P., 2024. "Flow through horizontal axis propeller turbines in a triangular array," Renewable Energy, Elsevier, vol. 220(C).
    16. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2018. "Multi-dimensional optimisation of Tidal Energy Converters array layouts considering geometric, economic and environmental constraints," Renewable Energy, Elsevier, vol. 116(PA), pages 647-658.
    17. Mestres, Marc & Cerralbo, Pablo & Grifoll, Manel & Sierra, Joan Pau & Espino, Manuel, 2019. "Modelling assessment of the tidal stream resource in the Ria of Ferrol (NW Spain) using a year-long simulation," Renewable Energy, Elsevier, vol. 131(C), pages 811-817.
    18. Koichi Watanabe & Yuji Ohya, 2021. "A Simple Theory and Performance Prediction for a Shrouded Wind Turbine with a Brimmed Diffuser," Energies, MDPI, vol. 14(12), pages 1-15, June.
    19. González-Gorbeña, Eduardo & Qassim, Raad Y. & Rosman, Paulo C.C., 2016. "Optimisation of hydrokinetic turbine array layouts via surrogate modelling," Renewable Energy, Elsevier, vol. 93(C), pages 45-57.
    20. Rahmatian, Mohammad Ali & Hashemi Tari, Pooyan & Majidi, Sahand & Mojaddam, Mohammad, 2023. "Experimental study of the effect of the duct on dual co-axial horizontal axis wind turbines and the effect of rotors diameter ratio and distance on increasing power coefficient," Energy, Elsevier, vol. 284(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:241:y:2025:i:c:s096014812402367x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.