IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124023012.html
   My bibliography  Save this article

The effect of oxygen-containing additives obtained from ethanol on basic properties of diesel fuel

Author

Listed:
  • Khusnutdinov, I. Sh.
  • Safiulina, A.G.
  • Safina, D.N.
  • Goncharova, I.N.

Abstract

The possibility of involving novel resources of renewable oxygen-containing components in the composition of diesel fuel is shown. It is proposed to use paraldehyde and its mixtures with 1,1-diethoxyethane as biofuel components. Renewable bioethanol can be used as a raw material to obtain paraldehyde and its mixtures with 1,1-diethoxyethane. Therefore, this approach can significantly expand the resource base for the production of biodiesel and increase the volume of production and consumption of biodiesel up to 17 %. In the present paper the data on low-temperature properties, viscosity and flash point of diesel fuel samples mixed with 1,1-diethoxyethane and/or paraldehyde are presented and analyzed. 1,1- diethoxyethane has a low pour point and improves low-temperature properties, whereas paraldehyde, on the contrary, worsens them. However, paraldehyde has a more favorable effect on flash point and viscosity than 1,1-diethoxyethane, which significantly reduces them. Thus, by mixing the studied components, it is possible to stabilize the properties of the fuel blend. Diesel blends containing up to 17 % oxygenates meet the requirements of various Classes and can be used as summer fuel, as well as winter and arctic fuel in cold climate regions.

Suggested Citation

  • Khusnutdinov, I. Sh. & Safiulina, A.G. & Safina, D.N. & Goncharova, I.N., 2025. "The effect of oxygen-containing additives obtained from ethanol on basic properties of diesel fuel," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124023012
    DOI: 10.1016/j.renene.2024.122233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124023012
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Goldemberg, José & Mello, Francisco F.C. & Cerri, Carlos E.P. & Davies, Christian A. & Cerri, Carlos C., 2014. "Meeting the global demand for biofuels in 2021 through sustainable land use change policy," Energy Policy, Elsevier, vol. 69(C), pages 14-18.
    2. Murphy, Fionnuala & Devlin, Ger & Deverell, Rory & McDonnell, Kevin, 2014. "Potential to increase indigenous biodiesel production to help meet 2020 targets – An EU perspective with a focus on Ireland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 35(C), pages 154-170.
    3. Abdul-Manan, Amir F.N. & Baharuddin, Azizan & Chang, Lee Wei, 2014. "A detailed survey of the palm and biodiesel industry landscape in Malaysia," Energy, Elsevier, vol. 76(C), pages 931-941.
    4. Đurišić-Mladenović, Nataša & Kiss, Ferenc & Škrbić, Biljana & Tomić, Milan & Mićić, Radoslav & Predojević, Zlatica, 2018. "Current state of the biodiesel production and the indigenous feedstock potential in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 280-291.
    5. Ajanovic, Amela & Haas, Reinhard, 2014. "On the future prospects and limits of biofuels in Brazil, the US and EU," Applied Energy, Elsevier, vol. 135(C), pages 730-737.
    6. Raju, V. Dhana & Venu, Harish & Subramani, Lingesan & Kishore, P.S. & Prasanna, P.L. & Kumar, D. Vinay, 2020. "An experimental assessment of prospective oxygenated additives on the diverse characteristics of diesel engine powered with waste tamarind biodiesel," Energy, Elsevier, vol. 203(C).
    7. Masera, Kemal & Hossain, Abul K. & Davies, Philip A. & Doudin, Khalid, 2021. "Investigation of 2-butoxyethanol as biodiesel additive on fuel property and combustion characteristics of two neat biodiesels," Renewable Energy, Elsevier, vol. 164(C), pages 285-297.
    8. Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph & Dybing, Alan & Pourhashem, Ghasideh, 2020. "First-generation vs. second-generation: A market incentives analysis for bioethanol supply chains with carbon policies," Applied Energy, Elsevier, vol. 277(C).
    9. Khusnutdinov, I. & Goncharova, I. & Safiulina, A. & Safina, D., 2023. "Study on the possibility of synthesizing oxygenates based on light pyrolysis resin using a modified ion exchange resin," Renewable Energy, Elsevier, vol. 217(C).
    10. Gowrishankar, Sudarshan & Krishnasamy, Anand, 2023. "Emulsification – A promising approach to improve performance and reduce exhaust emissions of a biodiesel fuelled light-duty diesel engine," Energy, Elsevier, vol. 263(PC).
    11. Jain, Sanyam & Kumar, Shushil, 2024. "A comprehensive review of bioethanol production from diverse feedstocks: Current advancements and economic perspectives," Energy, Elsevier, vol. 296(C).
    12. Ooi, Jong Boon & Chan, Xian Loong & Jaliliantabar, Farzad & Tan, Boon Thong & Wang, Xin & Song, Cher Pin & Chiong, Meng-Choung & Hung, Yew Mun, 2024. "Experimental study of quaternary blends with diesel/palm-oil biodiesel/ethanol/diethyl ether for optimum performance and emissions in a light-duty diesel engine using response surface methodology," Energy, Elsevier, vol. 301(C).
    13. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    14. Mikulski, Dawid & Kłosowski, Grzegorz, 2023. "Cellulose hydrolysis and bioethanol production from various types of lignocellulosic biomass after microwave-assisted hydrotropic pretreatment," Renewable Energy, Elsevier, vol. 206(C), pages 168-179.
    15. Mousavi-Avval, Seyed Hashem & Shah, Ajay, 2021. "Techno-economic analysis of hydroprocessed renewable jet fuel production from pennycress oilseed," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    16. Elsagan, Zahwa A. & Ali, Rehab M. & El-Naggar, Mohamed A. & El-Ashtoukhy, E.-S.Z. & AbdElhafez, Sara E., 2023. "New perspectives for maximizing sustainable bioethanol production from corn stover," Renewable Energy, Elsevier, vol. 209(C), pages 608-618.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khusnutdinov, I. & Goncharova, I. & Safiulina, A. & Safina, D., 2023. "Study on the possibility of synthesizing oxygenates based on light pyrolysis resin using a modified ion exchange resin," Renewable Energy, Elsevier, vol. 217(C).
    2. Ebrahimi, Sajad & Haji Esmaeili, Seyed Ali & Sobhani, Ahmad & Szmerekovsky, Joseph, 2022. "Renewable jet fuel supply chain network design: Application of direct monetary incentives," Applied Energy, Elsevier, vol. 310(C).
    3. Leal Silva, Jean Felipe & Nogueira, Luiz Augusto Horta & Cantarella, Heitor & Rossetto, Raffaella & Maciel Filho, Rubens & Souza, Glaucia Mendes, 2025. "Meta-data analysis of biofuels in emerging markets of Africa and Asia: Greenhouse gas savings and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 213(C).
    4. Cañadas, Raquel & Martín-Sampedro, Raquel & González-Miquel, María & González, Emilio J. & Ballesteros, Ignacio & Eugenio, María E. & Ibarra, David, 2025. "Microwave-assisted green solvents extraction as a sustainable approach to obtain antioxidants and enhance advanced bioethanol production from steam-exploded biomass," Renewable Energy, Elsevier, vol. 242(C).
    5. Zhai, Yijie & Zhang, Tianzuo & Ma, Xiaotian & Shen, Xiaoxu & Ji, Changxing & Bai, Yueyang & Hong, Jinglan, 2021. "Life cycle water footprint analysis of crop production in China," Agricultural Water Management, Elsevier, vol. 256(C).
    6. Goh, Brandon Han Hoe & Ong, Hwai Chyuan & Cheah, Mei Yee & Chen, Wei-Hsin & Yu, Kai Ling & Mahlia, Teuku Meurah Indra, 2019. "Sustainability of direct biodiesel synthesis from microalgae biomass: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 107(C), pages 59-74.
    7. Abdul-Manan, Amir F.N., 2017. "Lifecycle GHG emissions of palm biodiesel: Unintended market effects negate direct benefits of the Malaysian Economic Transformation Plan (ETP)," Energy Policy, Elsevier, vol. 104(C), pages 56-65.
    8. Gavaskar, T. & Ramanan M, Venkata & Arun, K. & Arivazhagan, S., 2023. "The combined effect of green synthesized nitrogen-doped carbon quantum dots blended jackfruit seed biodiesel and acetylene gas tested on the dual fuel engine," Energy, Elsevier, vol. 275(C).
    9. Shu, Qing & Zou, Wenqiang & He, Jiangfan & Lesmana, Herry & Zhang, Caixia & Zou, Laixi & Wang, Yao, 2019. "Preparation of the F−-SO42-/MWCNTs catalyst and kinetic studies of the biodiesel production via esterification reaction of oleic acid and methanol," Renewable Energy, Elsevier, vol. 135(C), pages 836-845.
    10. Seyed Hashem Mousavi-Avval & Sami Khanal & Ajay Shah, 2023. "Assessment of Potential Pennycress Availability and Suitable Sites for Sustainable Aviation Fuel Refineries in Ohio," Sustainability, MDPI, vol. 15(13), pages 1-14, July.
    11. Anantha Padmanabha, H.S. & Mohanty, Dillip Kumar, 2023. "Impact of additive ethylene glycol diacetate on diesel engine working with jatropha-karanja dual biodiesel," Renewable Energy, Elsevier, vol. 202(C), pages 116-126.
    12. H S, Anantha Padmanabha & Mohanty, Dillip Kumar, 2024. "Enhancement of combustion, performance and emission characteristics of diesel engines fuelled with jatropha-karanja biodiesel using EGM and TGME as additive," Energy, Elsevier, vol. 300(C).
    13. Geissler, Caleb H. & Maravelias, Christos T., 2021. "Economic, energetic, and environmental analysis of lignocellulosic biorefineries with carbon capture," Applied Energy, Elsevier, vol. 302(C).
    14. Benvenutti, Lívia M. & Uriona-Maldonado, Mauricio & Campos, Lucila M.S., 2019. "The impact of CO2 mitigation policies on light vehicle fleet in Brazil," Energy Policy, Elsevier, vol. 126(C), pages 370-379.
    15. Shu, Qing & Tang, Guoqiang & Lesmana, Herry & Zou, Laixi & Xiong, Daolin, 2018. "Preparation, characterization and application of a novel solid Brönsted acid catalyst SO42−/La3+/C for biodiesel production via esterification of oleic acid and methanol," Renewable Energy, Elsevier, vol. 119(C), pages 253-261.
    16. Samiran, Nor Afzanizam & Jaafar, Mohammad Nazri Mohd & Ng, Jo-Han & Lam, Su Shiung & Chong, Cheng Tung, 2016. "Progress in biomass gasification technique – With focus on Malaysian palm biomass for syngas production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 1047-1062.
    17. Zhang, Jianjun & Chen, Yang & Rao, Yongheng & Fu, Meichen & Prishchepov, Alexander V., 2017. "Alternative spatial allocation of suitable land for biofuel production in China," Energy Policy, Elsevier, vol. 110(C), pages 631-643.
    18. Mahdieh Parsaeian & Mohammad Rahimi & Abbas Rohani & Shaneka S. Lawson, 2022. "Towards the Modeling and Prediction of the Yield of Oilseed Crops: A Multi-Machine Learning Approach," Agriculture, MDPI, vol. 12(10), pages 1-23, October.
    19. Tang, J.P. & Lam, H.L. & Abdul Aziz, M.K. & Morad, N.A., 2017. "Palm biomass strategic resource managment – A competitive game analysis," Energy, Elsevier, vol. 118(C), pages 456-463.
    20. Xu, Lujiang & Chen, Shijia & Song, He & Liu, Yang & Shi, Chenchen & Lu, Qiang, 2020. "Comprehensively utilization of spent bleaching clay for producing high quality bio-fuel via fast pyrolysis process," Energy, Elsevier, vol. 190(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124023012. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.