IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022948.html
   My bibliography  Save this article

Hydrogen-ammonia-air flame acceleration and explosion overpressure generation in a horizontal closed obstructed duct

Author

Listed:
  • Liang, Bo
  • Zhang, Kai
  • Gao, Wei
  • Jiang, Yuting
  • Li, Yanchao

Abstract

Applying renewable hydrogen-ammonia mixed energy, composed of green hydrogen and green ammonia, in internal combustion engine can help reduce carbon emissions from the transportation sector. It is essential to understand the fundamental combustion characteristics to support its development. Therefore, the effects of equivalence ratio, ammonia ratio, and obstacle number on hydrogen-ammonia-air flame dynamics in an obstructed duct are obtained in this work. A prediction model is established to reveal the flame acceleration and overpressure generation. The results indicated that as the obstacle number increases, the flame structure within the main flame vortex transitions from wrinkled to filamentous fragmented flame structure; the flame tip speed increases, with the maximum value occurring at the cumulative acceleration stage. As the ammonia ratio increases, both the maximum flame tip speed and the speed fluctuation amplitude decreases. Regarding the explosion overpressure, the maximum explosion overpressure increases slightly with the increasing obstacle number. When the ammonia ratio is below Ω = 20 %, the obstacle #3 significantly increases the amplitude of explosion overpressure fluctuation. The prediction model can accurately predict the pressure rise rate under different experimental conditions and suggest that the flame stretching acceleration and the turbulent acceleration are the primary factors affecting the pressure rise rate.

Suggested Citation

  • Liang, Bo & Zhang, Kai & Gao, Wei & Jiang, Yuting & Li, Yanchao, 2025. "Hydrogen-ammonia-air flame acceleration and explosion overpressure generation in a horizontal closed obstructed duct," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022948
    DOI: 10.1016/j.renene.2024.122226
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022948
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122226?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yanchao & Bi, Mingshu & Li, Bei & Zhou, Yonghao & Huang, Lei & Gao, Wei, 2018. "Explosion hazard evaluation of renewable hydrogen/ammonia/air fuels," Energy, Elsevier, vol. 159(C), pages 252-263.
    2. Pandey, Jayashish Kumar & Dinesh, M.H. & Kumar, G.N., 2023. "A comparative study of NOx mitigating techniques EGR and spark delay on combustion and NOx emission of ammonia/hydrogen and hydrogen fuelled SI engine," Energy, Elsevier, vol. 276(C).
    3. de Salvo Junior, Orlando & Silva Forcetto, André Luiz & Maria Laganá, Armando Antonio & Vaz de Almeida, Flávio Guilherme & Baptista, Patrícia, 2024. "Combining on-road measurements and life-cycle carbon emissions of flex-fuel vehicle," Renewable and Sustainable Energy Reviews, Elsevier, vol. 204(C).
    4. Abbasi, Kashif Raza & Shahbaz, Muhammad & Zhang, Jinjun & Irfan, Muhammad & Alvarado, Rafael, 2022. "Analyze the environmental sustainability factors of China: The role of fossil fuel energy and renewable energy," Renewable Energy, Elsevier, vol. 187(C), pages 390-402.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Muhammad Sadiq & Mei Kei Leong & Ansa Savad Salim & Zhou Jiayao, 2025. "Fostering entrepreneurial success through the predictive role of knowledge management, green creativity, green social behavior, dynamic capabilities, business environment and green service innovation," International Entrepreneurship and Management Journal, Springer, vol. 21(1), pages 1-27, December.
    2. Zheng, Li & Abbasi, Kashif Raza & Salem, Sultan & Irfan, Muhammad & Alvarado, Rafael & Lv, Kangjuan, 2022. "How technological innovation and institutional quality affect sectoral energy consumption in Pakistan? Fresh policy insights from novel econometric approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    3. Wen, Chen & Xing, Yuhang & Wang, Tao & Liao, Sheng & Gao, Ke, 2025. "How do green supply chain management and renewable energy consumption influence carbon emissions in China and India? A comparative analysis," Energy Economics, Elsevier, vol. 143(C).
    4. Lanre Ibrahim, Ridwan & Bello Ajide, Kazeem & Usman, Muhammad & Kousar, Rakhshanda, 2022. "Heterogeneous effects of renewable energy and structural change on environmental pollution in Africa: Do natural resources and environmental technologies reduce pressure on the environment?," Renewable Energy, Elsevier, vol. 200(C), pages 244-256.
    5. Kiehbadroudinezhad, Mohammadali & Hosseinzadeh-Bandbafha, Homa & Pan, Junting & Peng, Wanxi & Wang, Yajing & Aghbashlo, Mortaza & Tabatabaei, Meisam, 2023. "The potential of aquatic weed as a resource for sustainable bioenergy sources and bioproducts production," Energy, Elsevier, vol. 278(PA).
    6. Zhou, Li & Li, Fashe & Duan, Yaozong & Wang, Hua, 2023. "Effect of phospholipids on the premixed combustion behavior of Jatropha curcas biodiesel," Renewable Energy, Elsevier, vol. 218(C).
    7. Zhou, Yuanxiang & Adebayo, Tomiwa Sunday & Yin, Weichuan & Abbas, Shujaat, 2023. "The co-movements among renewable energy, total environmental tax, and ecological footprint in the United Kingdom: Evidence from wavelet local multiple correlation analysis," Energy Economics, Elsevier, vol. 126(C).
    8. Lijuan Zhang & Tatyana Ponomarenko, 2023. "Directions for Sustainable Development of China’s Coal Industry in the Post-Epidemic Era," Sustainability, MDPI, vol. 15(8), pages 1-32, April.
    9. Xu, Yizhen & Qin, Botao & Shi, Quanlin & Hao, Mingyue & Shao, Xu & Jiang, Zhe & Ma, Zujie, 2023. "Study on the preparation and properties of colloidal gas foam concrete to prevent spontaneous combustion of coal," Energy, Elsevier, vol. 283(C).
    10. Huadao Xing & Runze Yu & Guangan Xu & Xiaodong Li & Yanyu Qiu & Derong Wang & Bin Li & Lifeng Xie, 2022. "Theoretical and Experimental Investigation of Explosion Characteristics of Hydrogen Explosion in a Closed Vessel," Energies, MDPI, vol. 15(22), pages 1-14, November.
    11. Cai, Helen Huifen & Yuan, Qiong & Tang, Shirley & Nguyen, Quang & Dai, Jie & Zheng, Wenxiu, 2025. "The moderating role of green innovation and ecofriendly goods in growth-greenhouse gas Nexus: A new policy dimension," Energy Economics, Elsevier, vol. 142(C).
    12. Tang, Juan & Jiang, Yanyan, 2024. "Natural resources-environment dilemma: The context of foreign direct investment and international trade," Resources Policy, Elsevier, vol. 89(C).
    13. Zhou, Runyu & Abbasi, Kashif Raza & Salem, Sultan & Almulhim, Abdulaziz.I. & Alvarado, Rafael, 2022. "Do natural resources, economic growth, human capital, and urbanization affect the ecological footprint? A modified dynamic ARDL and KRLS approach," Resources Policy, Elsevier, vol. 78(C).
    14. Yuting Lai & Tingting Fei & Chen Wang & Xiaoying Xu & Xinhan Zhuang & Xiang Que & Yanjiao Zhang & Wenli Yuan & Haohao Yang & Yu Hong, 2025. "Energy Carbon Emission Reduction Based on Spatiotemporal Heterogeneity: A County-Level Empirical Analysis in Guangdong, Fujian, and Zhejiang," Sustainability, MDPI, vol. 17(7), pages 1-21, April.
    15. Yinhui Wang & Yugang He & Xiaodan Gao, 2025. "Synergizing Renewable Energy and Circular Economy Strategies: Pioneering Pathways to Environmental Sustainability," Sustainability, MDPI, vol. 17(5), pages 1-22, February.
    16. Yan, Wan-Lin & Cheung, Adrian (Wai Kong), 2025. "Quantile connectedness among climate policy uncertainty, news sentiment, oil and renewables in China," Research in International Business and Finance, Elsevier, vol. 76(C).
    17. Chen, Huangxin & Zhang, Li & Pinzon, Stefania & Chen, Hongxi & Chen, Bin, 2025. "Decarbonizing the G7: Renewable energy, economic growth, globalization, and policy Pathways to sustainability," Renewable Energy, Elsevier, vol. 244(C).
    18. Xiangnan Zhai & Xue Yang & Darko B. Vukovic & Daria A. Dinets & Qiang Liu, 2025. "Carbon Emissions Trading Policy and Regional Energy Efficiency: A Quasi-Natural Experiment from China," Energies, MDPI, vol. 18(5), pages 1-20, February.
    19. Zhang, Jinjun & Abbasi, Kashif Raza & Hussain, Khadim & Akram, Sabahat & Alvarado, Rafael & Almulhim, Abdulaziz I., 2022. "Another perspective towards energy consumption factors in Pakistan: Fresh policy insights from novel methodological framework," Energy, Elsevier, vol. 249(C).
    20. Dapeng Liang & Jianjun Liu & Mengting Liu & Jiayin Sun, 2024. "Does information infrastructure and technological infrastructure reduce carbon dioxide emissions in the context of sustainable development? Examining spatial spillover effect," Sustainable Development, John Wiley & Sons, Ltd., vol. 32(3), pages 1599-1615, June.

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022948. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.