IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v240y2025ics0960148124022894.html
   My bibliography  Save this article

Experimental study on hydrogen production characteristics of millimeter aluminum spheres in sub/supercritical water

Author

Listed:
  • Wang, Yingdong
  • Wei, Yimeng
  • Zhuang, Zitong
  • Wei, Wenwen
  • Duan, Yanjuan
  • Yang, Yuxin
  • Jin, Hui

Abstract

Aluminum is a high-energy-density, plentiful, recyclable metal material that releases hydrogen and heat when reacted with water, and the process and by-products of the reaction are green and non-polluting. Previous studies have focused on the micron aluminum powders-water reaction using the activating additives. In this work, the hydrogen production characteristics of millimeter aluminum spheres in sub/supercritical water without any additives and catalysts are studied experimentally, investigating the effects of different reaction times, reaction temperatures, and aluminum sphere sizes on the hydrogen production characteristics. The results show that the reaction of a millimeter aluminum sphere and water is divided into four stages, and the hydrogen production increases with reaction time. For the 6.35 mm aluminum sphere, the peak of hydrogen yield can be as high as 86.7 % with a temperature of 550–600 °C, and the morphology evolution of the unreacted aluminum core is not a nearly spherical uniform shrinkage, finally showing as a near-pear shape particle. The by-product powder is converted from aluminum oxyhydroxide (AlOOH) to the most stable alumina (α-Al2O3) with the temperature increase. The smaller the particle size of the aluminum spheres, the higher the reaction ratio. The hydrogen yield and the reaction ratios of the 2.38 mm aluminum are up to 95 % and 91.71 %, respectively. The developed millimeter Al-sub/supercritical water reaction is promising to achieve integrated utilization of hydrogen-electricity-heat.

Suggested Citation

  • Wang, Yingdong & Wei, Yimeng & Zhuang, Zitong & Wei, Wenwen & Duan, Yanjuan & Yang, Yuxin & Jin, Hui, 2025. "Experimental study on hydrogen production characteristics of millimeter aluminum spheres in sub/supercritical water," Renewable Energy, Elsevier, vol. 240(C).
  • Handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022894
    DOI: 10.1016/j.renene.2024.122221
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124022894
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.122221?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhuk, A.Z. & Shkolnikov, E.I. & Borodina, T.I. & Valiano, G.E. & Dolzhenko, A.V. & Kiseleva, E.A. & Kochanova, S.A. & Filippov, E.D. & Semenova, V.A., 2023. "Aluminium – Water hydrogen generator for domestic and mobile application," Applied Energy, Elsevier, vol. 334(C).
    2. Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
    3. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    4. Zhang, Bowei & Zhao, Xiao & Zhang, Jie & Wang, Junying & Jin, Hui, 2023. "An investigation of the density of nano-confined subcritical/supercritical water," Energy, Elsevier, vol. 284(C).
    5. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    6. Xiao, Fei & Guo, Yanpei & Li, Jianmin & Yang, Rongjie, 2018. "Hydrogen generation from hydrolysis of activated aluminum composites in tap water," Energy, Elsevier, vol. 157(C), pages 608-614.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gai, Wei-Zhuo & Deng, Zhen-Yan, 2024. "Enhanced hydrogen production from Al-water reaction: Strategies, performances, mechanisms and applications," Renewable Energy, Elsevier, vol. 226(C).
    2. Hao, Tengteng & Xu, Kaili & Zhang, Ruiqi & Wang, Haojie & Zheng, Xin & Li, Jishuo & Yu, Yanwu & Zhang, Yuyuan & Liu, Zhenhua, 2025. "Green hydrogen control and efficiency enhancement technology for Al waste dust recovery in wet dust collection systems," Energy, Elsevier, vol. 319(C).
    3. Xinyue Gao & Chang’an Wang & Wengang Bai & Yujie Hou & Defu Che, 2022. "Aluminum-Based Fuels as Energy Carriers for Controllable Power and Hydrogen Generation—A Review," Energies, MDPI, vol. 16(1), pages 1-22, December.
    4. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    5. Wei, Manhui & Wang, Keliang & Pei, Pucheng & Zhong, Liping & Züttel, Andreas & Pham, Thi Ha My & Shang, Nuo & Zuo, Yayu & Wang, Hengwei & Zhao, Siyuan, 2023. "Zinc carboxylate optimization strategy for extending Al-air battery system's lifetime," Applied Energy, Elsevier, vol. 350(C).
    6. Neumann, Jannik & Fradet, Quentin & Scholtissek, Arne & Dammel, Frank & Riedel, Uwe & Dreizler, Andreas & Hasse, Christian & Stephan, Peter, 2024. "Thermodynamic assessment of an iron-based circular energy economy for carbon-free power supply," Applied Energy, Elsevier, vol. 368(C).
    7. Zhuk, A.Z. & Shkolnikov, E.I. & Borodina, T.I. & Valiano, G.E. & Dolzhenko, A.V. & Kiseleva, E.A. & Kochanova, S.A. & Filippov, E.D. & Semenova, V.A., 2023. "Aluminium – Water hydrogen generator for domestic and mobile application," Applied Energy, Elsevier, vol. 334(C).
    8. Gai, Wei-Zhuo & Wang, Le-Yao & Lu, Meng-Yao & Deng, Zhen-Yan, 2023. "Effect of low concentration hydroxides on Al hydrolysis for hydrogen production," Energy, Elsevier, vol. 268(C).
    9. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    10. Hao, Tengteng & Xu, Kaili & Wang, Haojie & Zheng, Xin & Li, Jishuo & Yu, Yanwu & Liu, Zhenhua, 2024. "Investigation into the hydrogen inhibition mechanism of Platycladus orientalis leaf extract as a biodegradation inhibitor for waste aluminum-silicon alloy dust in wet dust collectors," Renewable Energy, Elsevier, vol. 235(C).
    11. Alviani, Vani Novita & Hirano, Nobuo & Watanabe, Noriaki & Oba, Masahiro & Uno, Masaoki & Tsuchiya, Noriyoshi, 2021. "Local initiative hydrogen production by utilization of aluminum waste materials and natural acidic hot-spring water," Applied Energy, Elsevier, vol. 293(C).
    12. Suyong Kim & Sili Deng, 2024. "Learning reaction-transport coupling from thermal waves," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    13. Yuan, Yupeng & Wang, Jixiang & Yan, Xinping & Shen, Boyang & Long, Teng, 2020. "A review of multi-energy hybrid power system for ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    14. Dong, Wei & Tang, Yong & Hu, Zhenkun & Wang, Xiaoyu & Zhao, Majie & Shi, Baolu, 2025. "Zero-carbon combustion of aluminum powder fuel using an axial-tangential swirl burner," Energy, Elsevier, vol. 322(C).
    15. Jamey Davies & Stephanus P. Du Preez & Dmitri G. Bessarabov, 2022. "The Hydrolysis of Ball-Milled Aluminum–Bismuth–Nickel Composites for On-Demand Hydrogen Generation," Energies, MDPI, vol. 15(7), pages 1-22, March.
    16. Haller, Michel Y. & Amstad, Dominik & Dudita, Mihaela & Englert, Alexander & Häberle, Andreas, 2021. "Combined heat and power production based on renewable aluminium-water reaction," Renewable Energy, Elsevier, vol. 174(C), pages 879-893.
    17. Cyril Anak John & Lian See Tan & Jully Tan & Peck Loo Kiew & Azmi Mohd Shariff & Hairul Nazirah Abdul Halim, 2021. "Selection of Renewable Energy in Rural Area Via Life Cycle Assessment-Analytical Hierarchy Process (LCA-AHP): A Case Study of Tatau, Sarawak," Sustainability, MDPI, vol. 13(21), pages 1-18, October.
    18. Debiagi, P. & Rocha, R.C. & Scholtissek, A. & Janicka, J. & Hasse, C., 2022. "Iron as a sustainable chemical carrier of renewable energy: Analysis of opportunities and challenges for retrofitting coal-fired power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    19. Bozorg, Mehdi Vahabzadeh & Doranehgard, Mohammad Hossein & Hong, Kun & Xiong, Qingang & Li, Larry K.B., 2020. "A numerical study on discrete combustion of polydisperse magnesium aero-suspensions," Energy, Elsevier, vol. 194(C).
    20. Maas, Pascal & Schiemann, Martin & Scherer, Viktor & Fischer, Peter & Taroata, Dan & Schmid, Günther, 2018. "Lithium as energy carrier: CFD simulations of LI combustion in a 100MW slag tap furnace," Applied Energy, Elsevier, vol. 227(C), pages 506-515.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:240:y:2025:i:c:s0960148124022894. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.