IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v267y2023ics0360544222032868.html
   My bibliography  Save this article

Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model

Author

Listed:
  • Li, Chaolong
  • Xia, Zhixun
  • Ma, Likun
  • Chen, Binbin
  • Feng, Yunchao
  • Zhang, Jiarui
  • Duan, Yifan

Abstract

A quasi-one-dimensional model for performance analysis of scramjet has been developed for rapid design and optimization in the current paper. The heat release process along the supersonic combustor is based on the assumption of chemical equilibrium. Furthermore, the effects of flight Mach number ranging from 6 to 14, equivalence ratio ranging from 0.1 to 1.0, and three types of fuel (including boron-B, hydrocarbon-CH, and hydrogen-H2) on the performance of the scramjet have been studied. The energy specific impulse is proposed for the first time to evaluate the energy conversion ability of chemical energy to mechanical energy for different fuels. The results show that mass specific impulse not only depends on the heat value of the fuel but is also closely related to the energy conversion ability of the fuel. And the condensation heat and specific heat capacity of combustion products, and the mole ratio of the gaseous products to the gaseous reactants are the three main factors affecting the energy conversion ability for different fuels. Compared with the CH-fueled scramjet and H2-fueled scramjet, the B-fueled scramjet has the potential for miniaturization and can cruise at a higher Mach number, due to its larger volume specific impulse and specific thrust, respectively.

Suggested Citation

  • Li, Chaolong & Xia, Zhixun & Ma, Likun & Chen, Binbin & Feng, Yunchao & Zhang, Jiarui & Duan, Yifan, 2023. "Performance analysis on the specific impulse and specific thrust of scramjet with a quasi-one-dimensional model," Energy, Elsevier, vol. 267(C).
  • Handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222032868
    DOI: 10.1016/j.energy.2022.126400
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222032868
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.126400?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cheng, Kunlin & Qin, Jiang & Sun, Hongchuang & Li, Heng & He, Shuai & Zhang, Silong & Bao, Wen, 2019. "Power optimization and comparison between simple recuperated and recompressing supercritical carbon dioxide Closed-Brayton-Cycle with finite cold source on hypersonic vehicles," Energy, Elsevier, vol. 181(C), pages 1189-1201.
    2. Zhang, Duo & Yang, Shengbo & Zhang, Silong & Qin, Jiang & Bao, Wen, 2015. "Thermodynamic analysis on optimum performance of scramjet engine at high Mach numbers," Energy, Elsevier, vol. 90(P1), pages 1046-1054.
    3. Bergthorson, Jeffrey M. & Yavor, Yinon & Palecka, Jan & Georges, William & Soo, Michael & Vickery, James & Goroshin, Samuel & Frost, David L. & Higgins, Andrew J., 2017. "Metal-water combustion for clean propulsion and power generation," Applied Energy, Elsevier, vol. 186(P1), pages 13-27.
    4. Bao, Wen & Zhang, Silong & Qin, Jiang & Zhou, Weixing & Xie, Kaili, 2014. "Numerical analysis of flowing cracked hydrocarbon fuel inside cooling channels in view of thermal management," Energy, Elsevier, vol. 67(C), pages 149-161.
    5. Feng, Rong & Zhu, Jiajian & Wang, Zhenguo & Sun, Mingbo & Wang, Hongbo & Cai, Zun & An, Bin & Li, Liang, 2021. "Ignition modes of a cavity-based scramjet combustor by a gliding arc plasma," Energy, Elsevier, vol. 214(C).
    6. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Thermodynamic assessment on performance extremes of the fuel indirect precooled cycle for hypersonic airbreathing propulsion," Energy, Elsevier, vol. 186(C).
    7. Cai, Zun & Zhu, Jiajian & Sun, Mingbo & Wang, Zhenguo & Bai, Xue-Song, 2018. "Ignition processes and modes excited by laser-induced plasma in a cavity-based supersonic combustor," Applied Energy, Elsevier, vol. 228(C), pages 1777-1782.
    8. He, Yubao & Cao, Ruifeng & Huang, Hongyan & Qin, Jiang & Yu, Daren, 2017. "Overall performance assessment for scramjet with boundary-layer ejection control based on thermodynamics," Energy, Elsevier, vol. 121(C), pages 318-330.
    9. Yang, Qingchun & Chang, Juntao & Bao, Wen, 2014. "Thermodynamic analysis on specific thrust of the hydrocarbon fueled scramjet," Energy, Elsevier, vol. 76(C), pages 552-558.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ambe Verma, Kumari & Murari Pandey, Krishna & Ray, Mukul & Kumar Sharma, Kaushal, 2021. "Effect of transverse fuel injection system on combustion efficiency in scramjet combustor," Energy, Elsevier, vol. 218(C).
    2. Wang, Youyin & Hou, Wenxin & Zhang, Junlong & Tang, Jingfeng & Chang, Juntao & Bao, Wen, 2021. "Research on the operating boundary of the dual mode scramjet with a constant area combustor through thermodynamic cycle analysis," Energy, Elsevier, vol. 216(C).
    3. Feng, Yu & Liu, Yuna & Cao, Yong & Gong, Keyu & Liu, Shuyuan & Qin, Jiang, 2020. "Thermal management evaluation for advanced aero-engines using catalytic steam reforming of hydrocarbon fuels," Energy, Elsevier, vol. 193(C).
    4. Qin, Jiang & Cheng, Kunlin & Zhang, Silong & Zhang, Duo & Bao, Wen & Han, Jiecai, 2016. "Analysis of energy cascade utilization in a chemically recuperated scramjet with indirect combustion," Energy, Elsevier, vol. 114(C), pages 1100-1106.
    5. Zhang, Tiantian & Wang, Zhenguo & Huang, Wei & Ingham, Derek & Ma, Lin & Porkashanian, Mohamed, 2020. "An analysis tool of the rocket-based combined cycle engine and its application in the two-stage-to-orbit mission," Energy, Elsevier, vol. 193(C).
    6. Li, Xiaojie & Huang, Xiaobin & Liu, Hong & Du, Jianke, 2020. "Fuel reactivity controlled self-starting and propulsion performance of a scramjet: A model investigation," Energy, Elsevier, vol. 195(C).
    7. Kim, Sunjin & Kim, Min Soo & Kim, Minsung, 2020. "Parametric study and optimization of closed Brayton power cycle considering the charge amount of working fluid," Energy, Elsevier, vol. 198(C).
    8. Xiong, Yuefei & Qin, Jiang & Cheng, Kunlin & Wang, Youyin, 2020. "Influence of water injection on performance of scramjet engine," Energy, Elsevier, vol. 201(C).
    9. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2019. "Precooler-design & engine-performance conjugated optimization for fuel direct precooled airbreathing propulsion," Energy, Elsevier, vol. 170(C), pages 546-556.
    10. Yu, Xuanfei & Wang, Cong & Yu, Daren, 2020. "Series view method based thermodynamic modeling and analysis for innovative precooled aeroengines with different turbine-compressor coupling schemes," Energy, Elsevier, vol. 205(C).
    11. Wang, Cong & Yu, Xuanfei & Pan, Xin & Qin, Jiang & Huang, Hongyan, 2022. "Thermodynamic optimization of the indirect precooled engine cycle using the method of cascade utilization of cold sources," Energy, Elsevier, vol. 238(PB).
    12. Zhang, Duo & Qin, Jiang & Feng, Yu & Ren, Fengzhi & Bao, Wen, 2014. "Performance evaluation of power generation system with fuel vapor turbine onboard hydrocarbon fueled scramjets," Energy, Elsevier, vol. 77(C), pages 732-741.
    13. Wang, Cong & Yu, Xuanfei & Ha, Chan & Liu, Zekuan & Fang, Jiwei & Qin, Jiang & Shao, Jiahui & Huang, Hongyan, 2023. "Thermodynamic analysis for a novel chemical precooling turbojet engine based on a multi-stage precooling-compression cycle," Energy, Elsevier, vol. 262(PA).
    14. Sheng, Haoqiang & Ji, Yuan & Huang, Xiaobin & Zhao, Zhengchuang & Hu, Wenbin & Chen, Junming & Liu, Hong, 2022. "A free radical relay combustion approach to scramjet ignition at a low Mach number," Energy, Elsevier, vol. 247(C).
    15. Lv, Chengkun & Xu, Haiqi & Chang, Juntao & Wang, Youyin & Chen, Ruoyu & Yu, Daren, 2022. "Mode transition analysis of a turbine-based combined-cycle considering ammonia injection pre-compressor cooling and variable-geometry ram-combustor," Energy, Elsevier, vol. 261(PB).
    16. Janicka, J. & Debiagi, P. & Scholtissek, A. & Dreizler, A. & Epple, B. & Pawellek, R. & Maltsev, A. & Hasse, C., 2023. "The potential of retrofitting existing coal power plants: A case study for operation with green iron," Applied Energy, Elsevier, vol. 339(C).
    17. Lou, Juwei & Wang, Jiangfeng & Chen, Liangqi & Wang, Yikai & Zhao, Pan & Wang, Shunsen, 2023. "Multi-objective optimization and off-design performance evaluation of coaxial turbomachines for a novel energy storage-based recuperated S–CO2 Brayton cycle driven by nuclear energy," Energy, Elsevier, vol. 275(C).
    18. Trowell, K.A. & Goroshin, S. & Frost, D.L. & Bergthorson, J.M., 2020. "Aluminum and its role as a recyclable, sustainable carrier of renewable energy," Applied Energy, Elsevier, vol. 275(C).
    19. Jiang, Yuguang & Xu, Yaxing & Zhang, Silong & Chetehouna, Khaled & Gascoin, Nicolas & Qin, Jiang & Bao, Wen, 2017. "Parametric study on the distribution of flow rate and heat sink utilization in cooling channels of advanced aero-engines," Energy, Elsevier, vol. 138(C), pages 1056-1068.
    20. Sung-rok Hwang & Hyung Ju Lee, 2023. "Comparison and Evaluation of Transport Property Prediction Performance of Supercritical Hydrocarbon Aviation Fuels and Their Pyrolyzed Products via Endothermic Reactions," Energies, MDPI, vol. 16(13), pages 1-15, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:267:y:2023:i:c:s0360544222032868. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.