A study on the thermochemical conversion characteristics of biomass mixed blast furnace slag catalyst coupled in supercritical CO2/H2O atmosphere
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2024.121942
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nancy Eloísa Rodríguez-Olalde & Erick Alejandro Mendoza-Chávez & Agustín Jaime Castro-Montoya & Jaime Saucedo-Luna & Rafael Maya-Yescas & José Guadalupe Rutiaga-Quiñones & José María Ponce Ortega, 2015. "Simulation of Syngas Production from Lignin Using Guaiacol as a Model Compound," Energies, MDPI, vol. 8(7), pages 1-10, June.
- Xiangjun Yu & Wenlei Lian & Ke Gao & Zhixing Jiang & Cheng Tian & Nan Sun & Hangbin Zheng & Xinrui Wang & Chao Song & Xianglei Liu, 2022. "Solar Thermochemical CO 2 Splitting Integrated with Supercritical CO 2 Cycle for Efficient Fuel and Power Generation," Energies, MDPI, vol. 15(19), pages 1-20, October.
- Luo, Siyi & Fu, Jie & Zhou, Yangmin & Yi, Chuijie, 2017. "The production of hydrogen-rich gas by catalytic pyrolysis of biomass using waste heat from blast-furnace slag," Renewable Energy, Elsevier, vol. 101(C), pages 1030-1036.
- Yang, Xiaoxia & Gu, Shengshen & Kheradmand, Amanj & Kan, Tao & He, Jing & Strezov, Vladimir & Zou, Ruiping & Yu, Aibing & Jiang, Yijiao, 2022. "Tunable syngas production from biomass: Synergistic effect of steam, Ni–CaO catalyst, and biochar," Energy, Elsevier, vol. 254(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Huining & Dong, Jianping & Wei, Chao & Cao, Caifang & Zhang, Zuotai, 2022. "Future trend of terminal energy conservation in steelmaking plant: Integration of molten slag heat recovery-combustible gas preparation from waste plastics and CO2 emission reduction," Energy, Elsevier, vol. 239(PE).
- Zongliang Zuo & Tian Jing & Jinmeng Wang & Xinjiang Dong & Yishan Chen & Siyi Luo & Weiwei Zhang, 2022. "Sludge Gasification Using Iron Bearing Metallurgical Slag as Heat Carrier: Characteristics and Kinetics," Energies, MDPI, vol. 15(23), pages 1-15, December.
- Zuo, Zongliang & Feng, Yan & Li, Xiaoteng & Luo, Siyi & Ma, Jinshuang & Sun, Huiping & Bi, Xuejun & Yu, Qingbo & Zhou, Enze & Zhang, Jingkui & Guo, Jianxiang & Lin, Huan, 2021. "Thermal-chemical conversion of sewage sludge based on waste heat cascade recovery of copper slag: Mass and energy analysis," Energy, Elsevier, vol. 235(C).
- Xie, Huaqing & Li, Rongquan & Yu, Zhenyu & Wang, Zhengyu & Yu, Qingbo & Qin, Qin, 2020. "Combined steam/dry reforming of bio-oil for H2/CO syngas production with blast furnace slag as heat carrier," Energy, Elsevier, vol. 200(C).
- Sun, Yongqi & Seetharaman, Seshadri & Zhang, Zuotai, 2018. "Integrating biomass pyrolysis with waste heat recovery from hot slags via extending the C-loops: Product yields and roles of slags," Energy, Elsevier, vol. 149(C), pages 792-803.
- Antonio Molino & Vincenzo Larocca & Simeone Chianese & Dino Musmarra, 2018. "Biofuels Production by Biomass Gasification: A Review," Energies, MDPI, vol. 11(4), pages 1-31, March.
- Henrik Von Storch & Sonja Becker-Hardt & Christian Sattler, 2018. "(Solar) Mixed Reforming of Methane: Potential and Limits in Utilizing CO 2 as Feedstock for Syngas Production—A Thermodynamic Analysis," Energies, MDPI, vol. 11(10), pages 1-14, September.
- Isa, Khairuddin Md & Abdullah, Tuan Amran Tuan & Ali, Umi Fazara Md, 2018. "Hydrogen donor solvents in liquefaction of biomass: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1259-1268.
- Duan, Wenjun & Wu, Qinting & Li, Peishi & Cheng, Peiwen, 2022. "Techno-economic analysis of a novel full-chain blast furnace slag utilization system," Energy, Elsevier, vol. 242(C).
- Guo, Yongpeng & Chen, Jing & Song, Hualong & Zheng, Ke & Wang, Jian & Wang, Hongsheng & Kong, Hui, 2024. "A review of solar thermochemical cycles for fuel production," Applied Energy, Elsevier, vol. 357(C).
- Deng, Jin & Feng, Youneng & Li, Chun & Yuan, Zhaoran & Shang, Ruihang & Yuan, Shenfu, 2024. "Highly efficiency H2 production for real coal tar steam reforming over Ni-ca/H-Al catalyst: Effects of oxygen vacancy, CaO doping and synthesis methods," Applied Energy, Elsevier, vol. 367(C).
- Qitai Eri & Wenzhen Wu & Xinjun Zhao, 2017. "Numerical Investigation of the Air-Steam Biomass Gasification Process Based on Thermodynamic Equilibrium Model," Energies, MDPI, vol. 10(12), pages 1-19, December.
More about this item
Keywords
Supercritical CO2; Biomass; Thermochemical conversion; Catalyst;All these keywords.
JEL classification:
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:238:y:2025:i:c:s096014812402010x. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.