IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v236y2024ics0960148124015878.html
   My bibliography  Save this article

Acclimatisation process of biogas production from tofu industrial wastewater using biofilter in anaerobic baffled reactor (ABR)

Author

Listed:
  • Ningsih, Lydia Mawar
  • Hasanudin, Udin
  • Roubík, Hynek

Abstract

A biofilter is a simple technology used in an anaerobic baffled reactor (ABR) to keep biological solids (inoculum) from being easily carried by the inlet substrate and to shorten the hydraulic retention time (HRT). The principle of a biofilter is to form a biofilm on the packed bed of the biofilter in ABR so that it contains immobilised microorganisms. This study aims to know the performance of the biofilter reactor on biogas production during the acclimatisation process. The results show biofilters shorten the HRT and effectively remove pollutants, increasing biogas production and methane quality. The total solid content decreases by around 44 %, from 0.38 % to 0.17 %. The biogas production during acclimatisation was 1806.41 L and COD removal was 95 %. The biogas composition of CH4 was 58.05 %, CO2 38.23 %, and N2 3.2 %. This study provides preliminary findings for further studies on the use of tofu wastewater as a biogas feedstock with different concentrate substrates, which is very useful for sustainability activities and improving the industry to become green.

Suggested Citation

  • Ningsih, Lydia Mawar & Hasanudin, Udin & Roubík, Hynek, 2024. "Acclimatisation process of biogas production from tofu industrial wastewater using biofilter in anaerobic baffled reactor (ABR)," Renewable Energy, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015878
    DOI: 10.1016/j.renene.2024.121519
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124015878
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.121519?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marek Borowski & Piotr Życzkowski & Rafał Łuczak & Michał Karch & Jianwei Cheng, 2019. "Tests to Ensure the Minimum Methane Concentration for Gas Engines to Limit Atmospheric Emissions," Energies, MDPI, vol. 13(1), pages 1-15, December.
    2. Kasinath, Archana & Fudala-Ksiazek, Sylwia & Szopinska, Malgorzata & Bylinski, Hubert & Artichowicz, Wojciech & Remiszewska-Skwarek, Anna & Luczkiewicz, Aneta, 2021. "Biomass in biogas production: Pretreatment and codigestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 150(C).
    3. Yin, Juan & Su, Shi & Yu, Xin Xiang & Weng, Yiwu, 2010. "Thermodynamic characteristics of a low concentration methane catalytic combustion gas turbine," Applied Energy, Elsevier, vol. 87(6), pages 2102-2108, June.
    4. Li, Yue & Chen, Yinguang & Wu, Jiang, 2019. "Enhancement of methane production in anaerobic digestion process: A review," Applied Energy, Elsevier, vol. 240(C), pages 120-137.
    5. Nathaniel Sawyerr & Cristina Trois & Tilahun Workneh & Vincent Okudoh, 2019. "An Overview of Biogas Production: Fundamentals, Applications and Future Research," International Journal of Energy Economics and Policy, Econjournals, vol. 9(2), pages 105-116.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Marie-Noël Mansour & Thomas Lendormi & Nicolas Louka & Richard G. Maroun & Zeina Hobaika & Jean-Louis Lanoisellé, 2023. "Anaerobic Digestion of Poultry Droppings in Semi-Continuous Mode and Effect of Their Co-Digestion with Physico-Chemical Sludge on Methane Yield," Sustainability, MDPI, vol. 15(7), pages 1-19, March.
    2. Sharvini, Siva Raman & Noor, Zainura Zainon & Chong, Chun Shiong & Stringer, Lindsay C & Glew, David, 2020. "Energy generation from palm oil mill effluent: A life cycle assessment of two biogas technologies," Energy, Elsevier, vol. 191(C).
    3. Zakaria, Z. & Kamarudin, S.K., 2016. "Direct conversion technologies of methane to methanol: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 250-261.
    4. Ahmadi, Ehsan & Yousefzadeh, Samira & Mokammel, Adel & Miri, Mohammad & Ansari, Mohsen & Arfaeinia, Hossein & Badi, Mojtaba Yegane & Ghaffari, Hamid Reza & Rezaei, Soheila & Mahvi, Amir Hossein, 2020. "Kinetic study and performance evaluation of an integrated two-phase fixed-film baffled bioreactor for bioenergy recovery from wastewater and bio-wasted sludge," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Maria Salud Camilleri-Rumbau & Kelly Briceño & Lene Fjerbæk Søtoft & Knud Villy Christensen & Maria Cinta Roda-Serrat & Massimiliano Errico & Birgir Norddahl, 2021. "Treatment of Manure and Digestate Liquid Fractions Using Membranes: Opportunities and Challenges," IJERPH, MDPI, vol. 18(6), pages 1-30, March.
    6. Sun, Hui & Wang, Enzhen & Li, Xiang & Cui, Xian & Guo, Jianbin & Dong, Renjie, 2021. "Potential biomethane production from crop residues in China: Contributions to carbon neutrality," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    7. Li, Xinxin & Tong, Jingjing & Yuan, Maomao & Song, Mei & Gao, Jingsi & Zhu, Jia & Liu, Yanping, 2023. "Demonstrating the application of batch anaerobic digestion recirculating slurry inoculation of food waste engineering from a microbiological perspective," Renewable Energy, Elsevier, vol. 217(C).
    8. Irina N. Vikhareva & Guliya K. Aminova & Aliya K. Mazitova, 2022. "Resource Cycling: Application of Anaerobic Utilization Methods," Sustainability, MDPI, vol. 14(15), pages 1-16, July.
    9. Guimarães de Oliveira, Maurício & Marques Mourão, José Marcos & Marques de Oliveira, Ana Katherinne & Bezerra dos Santos, André & Lopes Pereira, Erlon, 2021. "Microaerophilic treatment enhanced organic matter removal and methane production rates during swine wastewater treatment: A long-term engineering evaluation," Renewable Energy, Elsevier, vol. 180(C), pages 691-699.
    10. Naquash, Ahmad & Agarwal, Neha & Nizami, Muhammad & Nga, Nguyen Nhu & Aziz, Muhammad & Lee, Moonyong, 2024. "Unlocking the potential of cryogenic biogas upgrading technologies integrated with bio-LNG production: A comparative assessment," Applied Energy, Elsevier, vol. 371(C).
    11. Arthur Chevalier & Philippe Evon & Florian Monlau & Virginie Vandenbossche & Cecilia Sambusiti, 2023. "Twin-Screw Extrusion Mechanical Pretreatment for Enhancing Biomethane Production from Agro-Industrial, Agricultural and Catch Crop Biomasses," Waste, MDPI, vol. 1(2), pages 1-18, May.
    12. Chaves, Gustavo T. & Teles, Felipe & Balbo, Antonio R. & dos Reis, Célia A. & Florentino, Helenice de Oliveira, 2024. "Mathematical modelling of biodigestion in an Indian biodigester and its stability analysis via Lyapunov technique," Renewable Energy, Elsevier, vol. 226(C).
    13. Marín, Pablo & Díez, Fernando V. & Ordóñez, Salvador, 2014. "A new method for controlling the ignition state of a regenerative combustor using a heat storage device," Applied Energy, Elsevier, vol. 116(C), pages 322-332.
    14. Yang, Min & Watson, Jamison & Wang, Zixin & Si, Buchun & Jiang, Weizhong & Zhou, Bo & Zhang, Yuanhui, 2022. "Understanding and design of two-stage fermentation: A perspective of interspecies electron transfer," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    15. Yu, Qilin & Mao, Haohao & Zhao, Zhiqiang & Zhang, Yaobin, 2023. "Electro-polarization of the sludge with dynamic magnetic field enhanced the interspecies electron transfer in ZVI-added anaerobic digesters," Renewable Energy, Elsevier, vol. 215(C).
    16. Kamalimeera, N. & Kirubakaran, V., 2021. "Prospects and restraints in biogas fed SOFC for rural energization: A critical review in indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    17. Malyan, Sandeep K. & Kumar, Smita S. & Fagodiya, Ram Kishor & Ghosh, Pooja & Kumar, Amit & Singh, Rajesh & Singh, Lakhveer, 2021. "Biochar for environmental sustainability in the energy-water-agroecosystem nexus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    18. Akhilesh Kumar Singh & Priti Pal & Saurabh Singh Rathore & Uttam Kumar Sahoo & Prakash Kumar Sarangi & Piotr Prus & Paweł Dziekański, 2023. "Sustainable Utilization of Biowaste Resources for Biogas Production to Meet Rural Bioenergy Requirements," Energies, MDPI, vol. 16(14), pages 1-22, July.
    19. Tiina M. Komulainen & Kjell Rune Jonassen & Simen Gjelseth Antonsen, 2024. "Estimation and Control of WRRF Biogas Production," Energies, MDPI, vol. 17(23), pages 1-20, November.
    20. Josipa Pavičić & Karolina Novak Mavar & Vladislav Brkić & Katarina Simon, 2022. "Biogas and Biomethane Production and Usage: Technology Development, Advantages and Challenges in Europe," Energies, MDPI, vol. 15(8), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:236:y:2024:i:c:s0960148124015878. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.