IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v227y2024ics0960148124005962.html
   My bibliography  Save this article

Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer

Author

Listed:
  • Li, Sheng
  • Gao, Jinshuang
  • Zhang, Lizhe
  • Wu, Fan
  • Zhao, Yazhou
  • Zhang, Xuejun

Abstract

Using phase-change slurry (PCS) as the working medium for solar energy systems, for example, in solar-assisted heat pump (SAHP), offers numerous advantages such as photovoltaic (PV) and photothermal (PT) energy generation and heat supply. The PCS experiences a dual-phase change coupled heat transfer during the heat release and refrigerant vaporization, as investigated through simulation. This study confirmed a coupled heat transfer with dual-phase change. It was found that there is more vapor at the upper coupling interface than at the lower coupling interface, and the difference is obviously enhanced when the flow rate decreases from 0.4 m s−1 to 0.1 m s−1 or the temperature increases from 12 °C to 16 °C. The increased rate of flow or decrease in refrigerant temperature is associated with a reduced equilibrium concentration at the lower coupling interface. Nevertheless, an increase in the flow rate at the lower coupling interface causes a decrease in the equilibrium concentration, while raising the temperature increases the concentration. When the flow rate increases from 0.1 m s−1 to 0.4 m s−1, the heat transfer coefficient at the upper/lower coupling interface increases from 159.77 W m−2 K−1/292.58 W m−2 K−1 to 593.54 W m−2 K−1/654.36 W m−2 K−1, and the heat transfer enhancement ratio reaches 45.39% and 9.29%, respectively. When the refrigerant temperature increases from 12 °C to 16 °C, the heat transfer coefficient at the upper/lower coupling interface decreases from 579.16 W m−2 K−1/572.91 W m−2 K−1 to 329.44 W m−2 K−1/365.67 W m−2 K−1, respectively. Increasing tilt angle of the pipe within a moderate range is a potential solution to enhance heat transfer and improve heat transfer uniformity.

Suggested Citation

  • Li, Sheng & Gao, Jinshuang & Zhang, Lizhe & Wu, Fan & Zhao, Yazhou & Zhang, Xuejun, 2024. "Numerical study on heat transfer and evaporation vaporization performance of solar assisted heat pump regenerative evaporator based on dual-phase change coupled heat transfer," Renewable Energy, Elsevier, vol. 227(C).
  • Handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005962
    DOI: 10.1016/j.renene.2024.120531
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124005962
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120531?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:227:y:2024:i:c:s0960148124005962. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.