IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v224y2024ics0960148124001976.html
   My bibliography  Save this article

Experimental investigation on a novel empirical parameter for simultaneous analysis of the temperature and concentration effects on fuel utilization coefficient of direct ethanol fuel cell

Author

Listed:
  • Ghadamian, Hossein
  • Moghadasi, Meisam
  • Baghban yousefkhani, Mojtaba
  • Javaheri, Masoumeh
  • Massoudi, Abouzar
  • Amirian, Hajar

Abstract

In this study, a DEFC with an anion-exchange membrane is investigated to evaluate fuel utilization both theoretically and experimentally. The effects of variations in the input fuel temperature and fuel concentration on fuel utilization and power density were analyzed through sensitivity analysis. To this end, for different test conditions containing initial conditions, increasing the input fuel temperature and oxygen blowing to the cathode with fuel circulation, ethanol utilization factor and maximum power density were calculated. The findings revealed increasing the fuel temperature and oxygen blowing led to an increase in the ethanol utilization factor from 66.92% to 85.15% and 73.54%. Moreover, maximum power density was increased from 16.2 to 17.5 and 22.5 mWcm−2 for increasing the fuel temperature and oxygen blowing states. According to the results, it was proved that increasing the input fuel temperature and oxygen-blowing conditions had a contradictory impact on the performance analysis. As a solution, a new parameter named δ is introduced to conduct a more accurate performance analysis of DEFC. This parameter indicates the amount of produced power per unit of fuel consumption. The results demonstrated that parameter δ was increased from 0.14 to 0.21 and 0.31 mWcm−2 for increasing the fuel temperature and oxygen blowing states.

Suggested Citation

  • Ghadamian, Hossein & Moghadasi, Meisam & Baghban yousefkhani, Mojtaba & Javaheri, Masoumeh & Massoudi, Abouzar & Amirian, Hajar, 2024. "Experimental investigation on a novel empirical parameter for simultaneous analysis of the temperature and concentration effects on fuel utilization coefficient of direct ethanol fuel cell," Renewable Energy, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001976
    DOI: 10.1016/j.renene.2024.120132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148124001976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2024.120132?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:224:y:2024:i:c:s0960148124001976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.