IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v220y2024ics0960148123015707.html
   My bibliography  Save this article

Exploitation of spoilage dates as biomass for the production of bioethanol and polyhydroxyalkanoates

Author

Listed:
  • Madi, Fathia
  • Hachicha, Ridha
  • Rodriguez Gamero, Jesus Enrique
  • Gupte, Ameya Pankaj
  • Gronchi, Nicoletta
  • Haddad, Mansour
  • Favaro, Lorenzo
  • Casella, Sergio
  • Basaglia, Marina

Abstract

The exploitation of agri-food wastes is of great importance for environmental and economic reasons. Date wastes are attractive biomasses that could be used as a carbon source for the growth of microorganisms to obtain added-value products. In this work, spoilage date syrup, containing 102.01 and 101.00 g/L of glucose and fructose, respectively, was assessed as a feedstock for the production of bioethanol and polyhydroxyalkanoates (PHAs) by Saccharomyces cerevisiae MEL2 and Cupriavidus necator DSM 545, respectively. The waste date syrup was first evaluated as a carbon source for microbial growth and resulted to sustain the growth of both strains. 47.95 g/L of ethanol, corresponding to the 93.52% of the theoretical yield, were obtained from the fermentation of date syrup by S. cerevisiae MEL2, here adopted as a proficient bioethanol yeast strain. Furthermore, C. necator DSM 545, a well-known PHAs-producer, was able to accumulate up to 79.20 % (w/w on dry mass) of PHAs. This study demonstrates that bioethanol and PHAs can be obtained from date wastes, contributing to developing cost-effective exploitation of these residues with economic and environmental advantages.

Suggested Citation

  • Madi, Fathia & Hachicha, Ridha & Rodriguez Gamero, Jesus Enrique & Gupte, Ameya Pankaj & Gronchi, Nicoletta & Haddad, Mansour & Favaro, Lorenzo & Casella, Sergio & Basaglia, Marina, 2024. "Exploitation of spoilage dates as biomass for the production of bioethanol and polyhydroxyalkanoates," Renewable Energy, Elsevier, vol. 220(C).
  • Handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015707
    DOI: 10.1016/j.renene.2023.119655
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123015707
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119655?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    2. Shao, Meng & Han, Zhixin & Sun, Jinwei & Xiao, Chengsi & Zhang, Shulei & Zhao, Yuanxu, 2020. "A review of multi-criteria decision making applications for renewable energy site selection," Renewable Energy, Elsevier, vol. 157(C), pages 377-403.
    3. Gupte, Ameya Pankaj & Basaglia, Marina & Casella, Sergio & Favaro, Lorenzo, 2022. "Rice waste streams as a promising source of biofuels: feedstocks, biotechnologies and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Favaro, Lorenzo & Basaglia, Marina & van Zyl, Willem H. & Casella, Sergio, 2013. "Using an efficient fermenting yeast enhances ethanol production from unfiltered wheat bran hydrolysates," Applied Energy, Elsevier, vol. 102(C), pages 170-178.
    5. Nicoletta Gronchi & Lorenzo Favaro & Lorenzo Cagnin & Silvia Brojanigo & Valentino Pizzocchero & Marina Basaglia & Sergio Casella, 2019. "Novel Yeast Strains for the Efficient Saccharification and Fermentation of Starchy By-Products to Bioethanol," Energies, MDPI, vol. 12(4), pages 1-13, February.
    6. Kunwar, Bidhya & Cheng, H.N. & Chandrashekaran, Sriram R & Sharma, Brajendra K, 2016. "Plastics to fuel: a review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 421-428.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Xia & Xu, Li & Cai, Jingjing & Peng, Cheng & Bian, Xiaoyan, 2024. "Offshore wind turbine selection with multi-criteria decision-making techniques involving D numbers and squeeze adversarial interpretive structural modeling method," Applied Energy, Elsevier, vol. 368(C).
    2. Patria, Raffel Dharma & Rehman, Shazia & Yuen, Chun-Bong & Lee, Duu-Jong & Vuppaladadiyam, Arun K. & Leu, Shao-Yuan, 2024. "Energy-environment-economic (3E) hub for sustainable plastic management – Upgraded recycling, chemical valorization, and bioplastics," Applied Energy, Elsevier, vol. 357(C).
    3. Zhang, Shiyu & Bie, Xuan & Qian, Zheng & Wu, Mengna & Li, Kaile & Li, Qinghai & Zhang, Yanguo & Zhou, Hui, 2024. "Synergistic interactions between cellulose and plastics (PET, HDPE, and PS) during CO2 gasification-catalytic reforming on Ni/CeO2 nanorod catalyst," Applied Energy, Elsevier, vol. 361(C).
    4. Park, Ki-Bum & Choi, Min-Jun & Chae, Da-Yeong & Jung, Jaeheum & Kim, Joo-Sik, 2022. "Separate two-step and continuous two-stage pyrolysis of a waste plastic mixture to produce a chlorine-depleted oil," Energy, Elsevier, vol. 244(PA).
    5. Marlina, Ena & Alhikami, Akhmad Faruq & Siyamuddin, Mursit & Aniza, Ria & Wang, Wei Cheng & Tijani, Alhassan Salami & Mustapa, Mohammad Sukri & Trismawati,, 2025. "Enhancing the combustion characteristics of plastic pyrolytic oils by doping nanocarbon additives for alternative energy," Energy, Elsevier, vol. 322(C).
    6. Bartłomiej Kizielewicz & Jarosław Wątróbski & Wojciech Sałabun, 2020. "Identification of Relevant Criteria Set in the MCDA Process—Wind Farm Location Case Study," Energies, MDPI, vol. 13(24), pages 1-40, December.
    7. Tao, Linwei & Hayashi, Kiichiro & Gyeltshen, Sangay & Shimoyama, Yuya, 2025. "Spatial assessment of utility-scale solar photovoltaic siting potential using machine learning approaches: A case study in Aichi prefecture, Japan," Applied Energy, Elsevier, vol. 383(C).
    8. Das, Amar Kumar & Sahu, Santosh Kumar & Panda, Achyut Kumar, 2022. "Current status and prospects of alternate liquid transportation fuels in compression ignition engines: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Chen, Zhidong & Su, Chao & Wu, Zexuan & Wang, Weijia & Chen, Lei & Yang, Lijun & Kong, Yanqiang & Du, Xiaoze, 2023. "Operation strategy and performance analyses of a distributed energy system incorporating concentrating PV/T and air source heat pump for heating supply," Applied Energy, Elsevier, vol. 341(C).
    10. Anna Matuszewska & Adam Hańderek & Maciej Paczuski & Krzysztof Biernat, 2021. "Hydrocarbon Fractions from Thermolysis of Waste Plastics as Components of Engine Fuels," Energies, MDPI, vol. 14(21), pages 1-14, November.
    11. Yang, Hua & Xu, Yong & Zhou, Kan & Li, Jiuyi, 2024. "Mapping development potential and priority zones for utility-scale photovoltaic on the Qinghai-Tibet Plateau," Renewable Energy, Elsevier, vol. 237(PA).
    12. Jun Zhao & Bonan Liu & Lunqiao Xiong & Wenchao Liu & Duanda Wang & Wangjing Ma & Litong Jiang & Jianlong Yang & Ping Wang & Tiancun Xiao & Sui Zhao & Peter P. Edwards & Junwang Tang, 2025. "Highly selective upcycling of plastic mixture waste by microwave-assisted catalysis over Zn/b-ZnO," Nature Communications, Nature, vol. 16(1), pages 1-11, December.
    13. José Carlos Romero & Pedro Linares, 2021. "Multiple Criteria Decision-Making as an Operational Conceptualization of Energy Sustainability," Sustainability, MDPI, vol. 13(21), pages 1-14, October.
    14. Joshua Ngetuny & Tobias Baldauf & Wilfried Zörner, 2025. "Optimizing Feedstock Selection for Sustainable Small-Scale Biogas Systems Using the Analytic Hierarchy Process," Energies, MDPI, vol. 18(7), pages 1-25, March.
    15. Tuyet Thi Anh Nguyen & Shuo-Yan Chou, 2022. "Fusion of interval-valued neutrosophic sets and financial assessment for optimal renewable energy portfolios with uncertainties," Energy & Environment, , vol. 33(4), pages 783-808, June.
    16. Xu, Yanyan & Xue, Yanqin & Qi, Hong & Cai, Weihua, 2021. "An updated review on working fluids, operation mechanisms, and applications of pulsating heat pipes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 144(C).
    17. Romero-Ramos, J.A. & Gil, J.D. & Cardemil, J.M. & Escobar, R.A. & Arias, I. & Pérez-García, M., 2023. "A GIS-AHP approach for determining the potential of solar energy to meet the thermal demand in southeastern Spain productive enclaves," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    18. Mahmoodi-Eshkaftaki, Mahmood & Dalvi-Isfahan, Mohsen, 2024. "Multiple exegetically optimization of ultrasonic pretreatment and substrate mixture for biohydrogen and biomethane improvement," Energy, Elsevier, vol. 292(C).
    19. Geovanna Villacreses & Diego Jijón & Juan Francisco Nicolalde & Javier Martínez-Gómez & Franz Betancourt, 2022. "Multicriteria Decision Analysis of Suitable Location for Wind and Photovoltaic Power Plants on the Galápagos Islands," Energies, MDPI, vol. 16(1), pages 1-23, December.
    20. Gao, Jing & Wang, Chao & Wang, Zhanwu & Lin, Jin & Zhang, Runkai & Wu, Xin & Xu, Guangyin & Wang, Zhenfeng, 2024. "Site selection decision for biomass cogeneration projects from a sustainable perspective: A case study of China," Energy, Elsevier, vol. 286(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:220:y:2024:i:c:s0960148123015707. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.