IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip2s0960148123014672.html
   My bibliography  Save this article

Experimental and numerical study on the hexadecanoic acid upgrading kinetics under supercritical ethanol without the use of hydrogen

Author

Listed:
  • Omer, Ahmed
  • Kazmi, Wajahat Waheed
  • Rahimipetroudi, Iman
  • Syed, Muhammad Wasi
  • Rashid, Kashif
  • Yang, Je Bok
  • Lee, In Gu
  • Dong, Sang Keun

Abstract

Effective modeling of chemical kinetics is critical for industrial plant analysis and design. In this study, we explore the use of artificial intelligence technologies to model chemical kinetics and obtain accurate results. Specifically, we investigate the supercritical upgrading of hexadecanoic acid as a model compound for coffee ground pyrolysis crude bio-oil over a 2-h holding time. The solvent and catalyst used are ethanol and MgNiMo/AC, respectively. Gas chromatography and gas chromatography-mass spectrometry are used to analyze and characterize the product obtained. Based on experimental data, we determine the reaction pathway and develop a genetic algorithm (GA) based model using power law kinetics and the Runge-Kutta method to estimate kinetic parameters such as reaction order, frequency factor, and activation energy. According to the findings, the most favorable liquid product yield for supercritical ethanol upgrading occurs at a temperature of 350 °C. The provided process requires less labor than previous methods, reduces a significant portion of calculation, and is a potent resource for addressing a broad range of other issues in physics and engineering.

Suggested Citation

  • Omer, Ahmed & Kazmi, Wajahat Waheed & Rahimipetroudi, Iman & Syed, Muhammad Wasi & Rashid, Kashif & Yang, Je Bok & Lee, In Gu & Dong, Sang Keun, 2023. "Experimental and numerical study on the hexadecanoic acid upgrading kinetics under supercritical ethanol without the use of hydrogen," Renewable Energy, Elsevier, vol. 219(P2).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014672
    DOI: 10.1016/j.renene.2023.119552
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123014672
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119552?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Nibedita & Ghosh, Sumanta Kumar & Bannerjee, Satarupa & Aikat, Kaustav, 2012. "Bioethanol production from agricultural wastes: An overview," Renewable Energy, Elsevier, vol. 37(1), pages 19-27.
    2. Zhang, Qing & Xu, Ying & Li, Yuping & Wang, Tiejun & Zhang, Qi & Ma, Longlong & He, Minghong & Li, Kai, 2015. "Investigation on the esterification by using supercritical ethanol for bio-oil upgrading," Applied Energy, Elsevier, vol. 160(C), pages 633-640.
    3. Shafaghat, Hoda & Kim, Ji Man & Lee, In-Gu & Jae, Jungho & Jung, Sang-Chul & Park, Young-Kwon, 2019. "Catalytic hydrodeoxygenation of crude bio-oil in supercritical methanol using supported nickel catalysts," Renewable Energy, Elsevier, vol. 144(C), pages 159-166.
    4. Ahmadi, Shima & Reyhanitash, Ehsan & Yuan, Zhongshun & Rohani, Sohrab & Xu, Chunbao (Charles), 2017. "Upgrading of fast pyrolysis oil via catalytic hydrodeoxygenation: Effects of type of solvents," Renewable Energy, Elsevier, vol. 114(PB), pages 376-382.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Feng, Junfeng & Yang, Zhongzhi & Hse, Chung-yun & Su, Qiuli & Wang, Kui & Jiang, Jianchun & Xu, Junming, 2017. "In situ catalytic hydrogenation of model compounds and biomass-derived phenolic compounds for bio-oil upgrading," Renewable Energy, Elsevier, vol. 105(C), pages 140-148.
    2. Fang, Jun & Liu, Zhuangzhuang & Luan, Hui & Liu, Fen & Yuan, Xingzhong & Long, Shundong & Wang, Andong & Ma, Yong & Xiao, Zhihua, 2021. "Thermochemical liquefaction of cattle manure using ethanol as solvent: Effects of temperature on bio-oil yields and chemical compositions," Renewable Energy, Elsevier, vol. 167(C), pages 32-41.
    3. Bayrakci, Asiye Gül & Koçar, Günnur, 2014. "Second-generation bioethanol production from water hyacinth and duckweed in Izmir: A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 306-316.
    4. M'Arimi, M.M. & Mecha, C.A. & Kiprop, A.K. & Ramkat, R., 2020. "Recent trends in applications of advanced oxidation processes (AOPs) in bioenergy production: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 121(C).
    5. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    6. Taghizadeh-Alisaraei, Ahmad & Assar, Hossein Alizadeh & Ghobadian, Barat & Motevali, Ali, 2017. "Potential of biofuel production from pistachio waste in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 510-522.
    7. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    8. Qu, Chunyun & Dai, Kaiqun & Fu, Hongxin & Wang, Jufang, 2021. "Enhanced ethanol production from lignocellulosic hydrolysates by Thermoanaerobacterium aotearoense SCUT27/ΔargR1864 with improved lignocellulose-derived inhibitors tolerance," Renewable Energy, Elsevier, vol. 173(C), pages 652-661.
    9. Chepeliev, Maksym & Diachuk, Oleksandr & Podolets, Roman & Trypolska, Galyna, 2021. "The role of bioenergy in Ukraine's climate mitigation policy by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    11. Shirkavand, Ehsan & Baroutian, Saeid & Gapes, Daniel J. & Young, Brent R., 2016. "Combination of fungal and physicochemical processes for lignocellulosic biomass pretreatment – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 217-234.
    12. Chen, Yu-Kai & Lin, Cheng-Han & Wang, Wei-Cheng, 2020. "The conversion of biomass into renewable jet fuel," Energy, Elsevier, vol. 201(C).
    13. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    14. Maria Alexandropoulou & Georgia Antonopoulou & Ioanna Ntaikou & Gerasimos Lyberatos, 2017. "Fungal Pretreatment of Willow Sawdust with Abortiporus biennis for Anaerobic Digestion: Impact of an External Nitrogen Source," Sustainability, MDPI, vol. 9(1), pages 1-14, January.
    15. Song, Younho & Cho, Eun Jin & Park, Chan Song & Oh, Chi Hoon & Park, Bok-Jae & Bae, Hyeun-Jong, 2019. "A strategy for sequential fermentation by Saccharomyces cerevisiae and Pichia stipitis in bioethanol production from hardwoods," Renewable Energy, Elsevier, vol. 139(C), pages 1281-1289.
    16. Rooni, Vahur & Raud, Merlin & Kikas, Timo, 2017. "The freezing pre-treatment of lignocellulosic material: A cheap alternative for Nordic countries," Energy, Elsevier, vol. 139(C), pages 1-7.
    17. Marta Ramos & Ana Paula Soares Dias & Jaime Filipe Puna & João Gomes & João Carlos Bordado, 2019. "Biodiesel Production Processes and Sustainable Raw Materials," Energies, MDPI, vol. 12(23), pages 1-30, November.
    18. Ramesh, Arumugam & Tamizhdurai, Perumal & Shanthi, Kannan, 2019. "Catalytic hydrodeoxygenation of jojoba oil to the green-fuel application on Ni-MoS/Mesoporous zirconia-silica catalysts," Renewable Energy, Elsevier, vol. 138(C), pages 161-173.
    19. Mertzanis, Charilaos, 2018. "Institutions, development and energy constraints," Energy, Elsevier, vol. 142(C), pages 962-982.
    20. Guragain, Yadhu N. & Wang, Donghai & Vadlani, Praveen V., 2016. "Appropriate biorefining strategies for multiple feedstocks: Critical evaluation for pretreatment methods, and hydrolysis with high solids loading," Renewable Energy, Elsevier, vol. 96(PA), pages 832-842.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p2:s0960148123014672. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.