IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v219y2023ip1s096014812301354x.html
   My bibliography  Save this article

Optical characterization of accumulated dust particles and the sustainability of transmitted solar irradiance to photovoltaic cells

Author

Listed:
  • Qaisieh, Alaa
  • Abu-Nabah, Bassam A.
  • Hamdan, Mohammad O.
  • Alami, Abdul Hai
  • Khanfar, Layla
  • Zaki, Laila

Abstract

This study aims at characterizing the optical properties of dust particles accumulated over time and its sole effect on transmitted solar irradiance. Several glass samples positioned at different orientations were kept in an outdoor environment allowing dust accumulation over a one-year cycle in Sharjah, UAE. A sample of each orientation was collected and examined on a weekly basis throughout the study period. The analysis of accumulated dust density and its effect on irradiance and optical spectrum transmissions through the glass samples is assessed for each sample orientation. Results showed dominance of some surfaces compared to others in terms of dust accumulation and reduction of transmitted optical spectrum against a wavelength range of 210–1029 nm. Throughout the study period of one year, the accumulated dust density and reduction of transmitted irradiance reached a maximum value of 22.6, 4.4, 16.8, 4.8, 6.0 g/m2 and 68.4, 12.3, 63.1, 12.1, 16.4 % for the 0° top, 0° bottom, 25° top, 25° bottom, and 90° surfaces, respectively. Moreover, the results were extended to estimate the reduction in available solar irradiance throughout the one-year study period. It was found that the estimated reduction reached as high as 67 % for the samples installed horizontally at 0° orientation.

Suggested Citation

  • Qaisieh, Alaa & Abu-Nabah, Bassam A. & Hamdan, Mohammad O. & Alami, Abdul Hai & Khanfar, Layla & Zaki, Laila, 2023. "Optical characterization of accumulated dust particles and the sustainability of transmitted solar irradiance to photovoltaic cells," Renewable Energy, Elsevier, vol. 219(P1).
  • Handle: RePEc:eee:renene:v:219:y:2023:i:p1:s096014812301354x
    DOI: 10.1016/j.renene.2023.119439
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014812301354X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.119439?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:219:y:2023:i:p1:s096014812301354x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.