IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v215y2023ics0960148123008078.html
   My bibliography  Save this article

Guaiacol hydrotreatment in an integrated APR-HDO process: Exploring the promoting effect of platinum on Ni–Pt catalysts and assessing methanol and glycerol as hydrogen sources

Author

Listed:
  • Jin, Wei
  • Gandara-Loe, Jesus
  • Pastor-Pérez, Laura
  • Villora-Picó, Juan J.
  • Sepúlveda-Escribano, Antonio
  • Rinaldi, Roberto
  • Reina, Tomas Ramirez

Abstract

This study presents an integrated approach combining aqueous phase reforming (APR) and hydrodeoxygenation (HDO) for the hydrotreatment of guaiacol, a model compound representing lignin-derived phenols in pyrolysis bio-oils. The APR process enables in-situ H2 generation, eliminating the need for an external hydrogen source. We examine the interplay between metal species, the Pt-promoting effect on Ni–Pt catalyst supported on activated carbon (AC), and the choice of hydrogen source (methanol or glycerol). Amongst the monometallic catalysts, a 1% Pt/AC catalyst notably achieved over 96% guaiacol conversion at 300 °C with either hydrogen source. Interestingly, when 0.5–1% of the Ni loading is replaced with Pt, the resulting bimetallic Ni–Pt/AC catalysts demonstrate a significant improvement in guaiacol conversion, reaching 70% when methanol is employed as the hydrogen source. Surprisingly, no comparable enhancement in guaiacol conversion is observed when employing glycerol as the hydrogen source. This observation underlines one of the pivotal effects of the hydrogen source on catalyst performance. X-ray photoemission spectroscopy (XPS) pinpointed strong Ni–Pt interactions in the catalyst. It also revealed distinctive electronic features of Ni–Pt/AC, which are favourable for steering selectivity towards cyclohexanol rather than phenol when Pt loading is increased from 0.5 to 1%. Moreover, Pt enhanced catalyst stability by inhibiting the oxidation of Ni sites and mitigating Ni–Pt phase sintering. Overall, our findings offer important insights into integrating APR and HDO processes, the promotion effect of Pt, and the importance of hydrogen source selection in terms of guaiacol conversion and catalyst stability.

Suggested Citation

  • Jin, Wei & Gandara-Loe, Jesus & Pastor-Pérez, Laura & Villora-Picó, Juan J. & Sepúlveda-Escribano, Antonio & Rinaldi, Roberto & Reina, Tomas Ramirez, 2023. "Guaiacol hydrotreatment in an integrated APR-HDO process: Exploring the promoting effect of platinum on Ni–Pt catalysts and assessing methanol and glycerol as hydrogen sources," Renewable Energy, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008078
    DOI: 10.1016/j.renene.2023.118907
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123008078
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.118907?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lili Lin & Wu Zhou & Rui Gao & Siyu Yao & Xiao Zhang & Wenqian Xu & Shijian Zheng & Zheng Jiang & Qiaolin Yu & Yong-Wang Li & Chuan Shi & Xiao-Dong Wen & Ding Ma, 2017. "Low-temperature hydrogen production from water and methanol using Pt/α-MoC catalysts," Nature, Nature, vol. 544(7648), pages 80-83, April.
    2. Min Wang & Meijiang Liu & Jianmin Lu & Feng Wang, 2020. "Photo splitting of bio-polyols and sugars to methanol and syngas," Nature Communications, Nature, vol. 11(1), pages 1-9, December.
    3. Li, Xiangping & Chen, Guanyi & Liu, Caixia & Ma, Wenchao & Yan, Beibei & Zhang, Jianguang, 2017. "Hydrodeoxygenation of lignin-derived bio-oil using molecular sieves supported metal catalysts: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 296-308.
    4. Zhang, Xinghua & Tang, Wenwu & Zhang, Qi & Wang, Tiejun & Ma, Longlong, 2018. "Hydrodeoxygenation of lignin-derived phenoic compounds to hydrocarbon fuel over supported Ni-based catalysts," Applied Energy, Elsevier, vol. 227(C), pages 73-79.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sharma, Vinit & Getahun, Tokuma & Verma, Minal & Villa, Alberto & Gupta, Neeraj, 2020. "Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Li, Xiangping & Chen, Lei & Chen, Guanyi & Zhang, Jianguang & Liu, Juping, 2020. "The relationship between acidity, dispersion of nickel, and performance of Ni/Al-SBA-15 catalyst on eugenol hydrodeoxygenation," Renewable Energy, Elsevier, vol. 149(C), pages 609-616.
    3. Sethu Sundar Pethaiah & Kishor Kumar Sadasivuni & Arunkumar Jayakumar & Deepalekshmi Ponnamma & Chandra Sekhar Tiwary & Gangadharan Sasikumar, 2020. "Methanol Electrolysis for Hydrogen Production Using Polymer Electrolyte Membrane: A Mini-Review," Energies, MDPI, vol. 13(22), pages 1-17, November.
    4. Li, Wenjia & Hao, Yong, 2017. "Efficient solar power generation combining photovoltaics and mid-/low-temperature methanol thermochemistry," Applied Energy, Elsevier, vol. 202(C), pages 377-385.
    5. Zhang, Xing & Wang, Kaige & Chen, Junhao & Zhu, Lingjun & Wang, Shurong, 2020. "Mild hydrogenation of bio-oil and its derived phenolic monomers over Pt–Ni bimetal-based catalysts," Applied Energy, Elsevier, vol. 275(C).
    6. Perkins, Greg & Bhaskar, Thallada & Konarova, Muxina, 2018. "Process development status of fast pyrolysis technologies for the manufacture of renewable transport fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 292-315.
    7. Evgeniy Yurevich Titov & Ivan Vasilevich Bodrikov & Anton Igorevich Serov & Yuriy Alekseevich Kurskii & Dmitry Yurievich Titov & Evgenia Ruslanovna Bodrikova, 2022. "Liquid-Phase Non-Thermal Plasma Discharge for Fuel Oil Processing," Energies, MDPI, vol. 15(9), pages 1-9, May.
    8. Konstantinos Kappis & Joan Papavasiliou & George Avgouropoulos, 2021. "Methanol Reforming Processes for Fuel Cell Applications," Energies, MDPI, vol. 14(24), pages 1-30, December.
    9. Wang, Yancheng & Liu, Haiyu & Mei, Deqing & Yu, Shizheng, 2022. "Direct ink writing of 3D SiC scaffold as catalyst support for thermally autonomous methanol steam reforming microreactor," Renewable Energy, Elsevier, vol. 187(C), pages 923-932.
    10. Moreira, Rui & Bimbela, Fernando & Gandía, Luis M. & Ferreira, Abel & Sánchez, Jose Luis & Portugal, António, 2021. "Oxidative steam reforming of glycerol. A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    11. Rongkui Su & Hongguo Zhang & Feng Chen & Zhenxing Wang & Lei Huang, 2022. "Applications of Single Atom Catalysts for Environmental Management," IJERPH, MDPI, vol. 19(18), pages 1-6, September.
    12. Fan, Liangliang & Ruan, Roger & Li, Jun & Ma, Longlong & Wang, Chenguang & Zhou, Wenguang, 2020. "Aromatics production from fast co-pyrolysis of lignin and waste cooking oil catalyzed by HZSM-5 zeolite," Applied Energy, Elsevier, vol. 263(C).
    13. Xin, Yanbin & Sun, Bing & Zhu, Xiaomei & Yan, Zhiyu & Zhao, Xiaotong & Sun, Xiaohang, 2017. "Hydrogen production from ethanol decomposition by pulsed discharge with needle-net configurations," Applied Energy, Elsevier, vol. 206(C), pages 126-133.
    14. Hao Meng & Yusen Yang & Tianyao Shen & Wei Liu & Lei Wang & Pan Yin & Zhen Ren & Yiming Niu & Bingsen Zhang & Lirong Zheng & Hong Yan & Jian Zhang & Feng-Shou Xiao & Min Wei & Xue Duan, 2023. "A strong bimetal-support interaction in ethanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    15. Hao Meng & Yusen Yang & Tianyao Shen & Zhiming Yin & Lei Wang & Wei Liu & Pan Yin & Zhen Ren & Lirong Zheng & Jian Zhang & Feng-Shou Xiao & Min Wei, 2023. "Designing Cu0−Cu+ dual sites for improved C−H bond fracture towards methanol steam reforming," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    16. Xin, Yanbin & Sun, Bing & Liu, Jingyu & Wang, Quanli & Zhu, Xiaomei & Yan, Zhiyu, 2021. "Effects of electrode configurations, solution pH, TiO2 addition on hydrogen production by in-liquid discharge plasma," Renewable Energy, Elsevier, vol. 171(C), pages 728-734.
    17. Arun, J. & Raghu, R. & Suhail Madhar Hanif, S. & Thilak, P.G. & Sridhar, D. & Nirmala, N. & Dawn, S.S. & Sivaramakrishnan, R. & Chi, Nguyen Thuy Lan & Pugazhendhi, Arivalagan, 2022. "A comparative review on photo and mixotrophic mode of algae cultivation: Thermochemical processing of biomass, necessity of bio-oil upgrading, challenges and future roadmaps," Applied Energy, Elsevier, vol. 325(C).
    18. Jing-Wen Hsueh & Lai-Hsiang Kuo & Po-Han Chen & Wan-Hsin Chen & Chi-Yao Chuang & Chia-Nung Kuo & Chin-Shan Lue & Yu-Ling Lai & Bo-Hong Liu & Chia-Hsin Wang & Yao-Jane Hsu & Chun-Liang Lin & Jyh-Pin Ch, 2024. "Investigating the role of undercoordinated Pt sites at the surface of layered PtTe2 for methanol decomposition," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    19. Nanduri, Arvind & Kulkarni, Shreesh S. & Mills, Patrick L., 2021. "Experimental techniques to gain mechanistic insight into fast pyrolysis of lignocellulosic biomass: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    20. Li, Xin & Luo, Xingyi & Jin, Yangbin & Li, Jinyan & Zhang, Hongdan & Zhang, Aiping & Xie, Jun, 2018. "Heterogeneous sulfur-free hydrodeoxygenation catalysts for selectively upgrading the renewable bio-oils to second generation biofuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3762-3797.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:215:y:2023:i:c:s0960148123008078. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.