Numerical study for nonlinear hydrodynamic coefficients of an asymmetric wave energy converter
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2023.06.023
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sunny Kumar Poguluri & Il-Hyoung Cho & Yoon Hyeok Bae, 2019. "A Study of the Hydrodynamic Performance of a Pitch-type Wave Energy Converter–Rotor," Energies, MDPI, vol. 12(5), pages 1-16, March.
- Chandrasekaran, Srinivasan & Sricharan, V.V.S., 2020. "Numerical analysis of a new multi-body floating wave energy converter with a linear power take-off system," Renewable Energy, Elsevier, vol. 159(C), pages 250-271.
- Jinming Wu & Yingxue Yao & Dongke Sun & Zhonghua Ni & Malin Göteman, 2019. "Numerical and Experimental Study of the Solo Duck Wave Energy Converter," Energies, MDPI, vol. 12(10), pages 1-19, May.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Xinhui & Wei, Jianfeng & Sheng, Songwei & Wang, Wensheng & Wang, Kunlin & Zhang, Yaqun & Wang, Zhenpeng, 2023. "Design and experimental study of a novel type water-filled submerged flexible bag wave energy converter," Renewable Energy, Elsevier, vol. 218(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hengxu Liu & Feng Yan & Fengmei Jing & Jingtao Ao & Zhaoliang Han & Fankai Kong, 2020. "Numerical and Experimental Investigation on a Moonpool-Buoy Wave Energy Converter," Energies, MDPI, vol. 13(9), pages 1-16, May.
- Sricharan, V.V.S. & Chandrasekaran, Srinivasan, 2021. "Time-domain analysis of a bean-shaped multi-body floating wave energy converter with a hydraulic power take-off using WEC-Sim," Energy, Elsevier, vol. 223(C).
- Cui, Lin & Zheng, Siming & Zhang, Yongliang & Miles, Jon & Iglesias, Gregorio, 2021. "Wave power extraction from a hybrid oscillating water column-oscillating buoy wave energy converter," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
- Cheng, Yong & Xi, Chen & Dai, Saishuai & Ji, Chunyan & Collu, Maurizio & Li, Mingxin & Yuan, Zhiming & Incecik, Atilla, 2022. "Wave energy extraction and hydroelastic response reduction of modular floating breakwaters as array wave energy converters integrated into a very large floating structure," Applied Energy, Elsevier, vol. 306(PA).
- Marcin Drzewiecki & Jarosław Guziński, 2020. "Fuzzy Control of Waves Generation in a Towing Tank," Energies, MDPI, vol. 13(8), pages 1-17, April.
- Zhu, Kai & Shi, Hongda & Zheng, Siming & Michele, Simone & Cao, Feifei, 2023. "Hydrodynamic analysis of hybrid system with wind turbine and wave energy converter," Applied Energy, Elsevier, vol. 350(C).
- Joensen, Bárður & Bingham, Harry B., 2024. "Economic feasibility study for wave energy conversion device deployment in Faroese waters," Energy, Elsevier, vol. 295(C).
- Chen, Shuo & Jiang, Boxi & Li, Xiaofan & Huang, Jianuo & Wu, Xian & Xiong, Qiuchi & Parker, Robert G. & Zuo, Lei, 2022. "Design, dynamic modeling and wave basin verification of a Hybrid Wave–Current Energy Converter," Applied Energy, Elsevier, vol. 321(C).
- He, Guanghua & Luan, Zhengxiao & Jin, Ruijia & Zhang, Wei & Wang, Wei & Zhang, Zhigang & Jing, Penglin & Liu, Pengfei, 2022. "Numerical and experimental study on absorber-type wave energy converters concentrically arranged on an octagonal platform," Renewable Energy, Elsevier, vol. 188(C), pages 504-523.
- He, Guanghua & Luan, Zhengxiao & Zhang, Wei & He, Runhua & Liu, Chaogang & Yang, Kaibo & Yang, Changhao & Jing, Penglin & Zhang, Zhigang, 2023. "Review on research approaches for multi-point absorber wave energy converters," Renewable Energy, Elsevier, vol. 218(C).
- Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
- Tournant, Paul & Perret, Gaële & Smaoui, Hassan & Sergent, Philippe & Marin, François, 2023. "Shape parameters optimisation of a quayside heaving rectangular wave energy converter," Applied Energy, Elsevier, vol. 343(C).
- Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.
More about this item
Keywords
Asymmetric wave energy converter; Reynolds-averaged Navier-Stokes equation; Response amplitude operator; Hydrodynamic coefficients; Nonlinear effect;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:214:y:2023:i:c:p:185-193. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.