IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v12y2019i5p842-d210839.html
   My bibliography  Save this article

A Study of the Hydrodynamic Performance of a Pitch-type Wave Energy Converter–Rotor

Author

Listed:
  • Sunny Kumar Poguluri

    (Department of Ocean System Engineering, Jeju National University, Jeju, Korea)

  • Il-Hyoung Cho

    (Department of Ocean System Engineering, Jeju National University, Jeju, Korea)

  • Yoon Hyeok Bae

    (Department of Ocean System Engineering, Jeju National University, Jeju, Korea)

Abstract

The effect of hydrodynamic performance of the wave energy converter (WEC)–rotor based on linear potential flow theory due to nonlinear viscous damping was investigated. Free decay tests were conducted using computational fluid dynamics (CFD) to obtain the viscous damping moment. The commonly used procedure for obtaining the damping moment is based on peak amplitudes which normally require a long time history records. Such long free decay records may not be possible in nodding WEC rotor due high damping. The energy method proposed by Bass and Haddara requires only the short and full range of the recorded data. This method provides sufficiently good results when the bodies have high damping. The method equates the rate of change of the total energy of a body undergoing free rolling/pitching to the rate of energy dissipated by the damping. The present study adopts a similar methodology for estimating the linear and linear plus quadratic damping. To incorporate the nonlinear viscous damping moment in the linear equation of motion, an equivalent linearization concept is used without neglecting the nonlinear damping effects. The hydrodynamic coefficients obtained from the linear potential flow theory, nonlinear viscous damping moment from the energy method and estimated PTO damping are used to solve the equation of motion of the WEC rotor. The estimated pitch free decay data shows good agreement with the simulated CFD results when compared to the linear viscous damping moment and better agreement is obtained with linear plus quadratic viscous damping moment. The regular and irregular wave analyses show that a considerable effect on the hydrodynamic performance of the WEC rotor is observed when the linear and linear plus quadratic viscous damping are included.

Suggested Citation

  • Sunny Kumar Poguluri & Il-Hyoung Cho & Yoon Hyeok Bae, 2019. "A Study of the Hydrodynamic Performance of a Pitch-type Wave Energy Converter–Rotor," Energies, MDPI, vol. 12(5), pages 1-16, March.
  • Handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:842-:d:210839
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/12/5/842/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/12/5/842/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Jinming Wu & Yingxue Yao & Wei Li & Liang Zhou & Malin Göteman, 2017. "Optimizing the Performance of Solo Duck Wave Energy Converter in Tide," Energies, MDPI, vol. 10(3), pages 1-19, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ko, Haeng Sik & Poguluri, Sunny Kumar & Shin, Jeong-Heon & Bae, Yoon Hyeok, 2023. "Numerical study for nonlinear hydrodynamic coefficients of an asymmetric wave energy converter," Renewable Energy, Elsevier, vol. 214(C), pages 185-193.
    2. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    3. Marcin Drzewiecki & Jarosław Guziński, 2020. "Fuzzy Control of Waves Generation in a Towing Tank," Energies, MDPI, vol. 13(8), pages 1-17, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xuhui Yue & Jintao Zhang & Feifeng Meng & Jiaying Liu & Qijuan Chen & Dazhou Geng, 2023. "Multi-Timescale Lookup Table Based Maximum Power Point Tracking of an Inverse-Pendulum Wave Energy Converter: Power Assessments and Sensitivity Study," Energies, MDPI, vol. 16(17), pages 1-25, August.
    2. Jinming Wu & Yingxue Yao & Dongke Sun & Zhonghua Ni & Malin Göteman, 2019. "Numerical and Experimental Study of the Solo Duck Wave Energy Converter," Energies, MDPI, vol. 12(10), pages 1-19, May.
    3. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Göteman, Malin, 2018. "Real-time latching control strategies for the solo Duck wave energy converter in irregular waves," Applied Energy, Elsevier, vol. 222(C), pages 717-728.
    4. Liu, Changhai & Hu, Min & Gao, Wenzhi & Chen, Jian & Zeng, Yishan & Wei, Daozhu & Yang, Qingjun & Bao, Gang, 2021. "A high-precise model for the hydraulic power take-off of a raft-type wave energy converter," Energy, Elsevier, vol. 215(PA).
    5. Yazdi, Hossein & Ghafari, Hamid Reza & Ghassemi, Hassan & He, Guanghua & Karimirad, Madjid, 2023. "Wave power extraction by Multi-Salter's duck WECs arrayed on the floating offshore wind turbine platform," Energy, Elsevier, vol. 278(PA).
    6. Jinming Wu & Yingxue Yao & Liang Zhou & Malin Göteman, 2017. "Latching and Declutching Control of the Solo Duck Wave-Energy Converter with Different Load Types," Energies, MDPI, vol. 10(12), pages 1-18, December.
    7. Wu, Jinming & Yao, Yingxue & Zhou, Liang & Chen, Ni & Yu, Huifeng & Li, Wei & Göteman, Malin, 2017. "Performance analysis of solo Duck wave energy converter arrays under motion constraints," Energy, Elsevier, vol. 139(C), pages 155-169.
    8. Guo, Bingyong & Ringwood, John V., 2021. "Geometric optimisation of wave energy conversion devices: A survey," Applied Energy, Elsevier, vol. 297(C).
    9. Zhang, Yongxing & Huang, Zhicong & Zou, Bowei & Bian, Jing, 2023. "Conceptual design and analysis for a novel parallel configuration-type wave energy converter," Renewable Energy, Elsevier, vol. 208(C), pages 627-644.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:12:y:2019:i:5:p:842-:d:210839. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.