IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v211y2023icp761-771.html

Impact of optimal sizing and integration of thermal energy storage in solar assisted energy systems

Author

Listed:
  • Alrobaian, Abdulrahman A.

Abstract

It is becoming increasingly important for human societies to use renewable energy. More effective energy storage solutions are crucial to increase the share of renewable energy in the domestic and industrial sectors, which consumes a large amount of thermal energy for heating and cooling purposes. There has been little quantitative analysis of thermal energy storage in solar-based cold production units. An efficient method of designing heat and/or cold storage systems and smart operation planning can help a cooling/heating system to be smaller for the same capacity of supply and thereby reducing the costs of initial investment and costs of operation. This paper attempts to show how the size of a heat and cold storage system affects its thermal performance and how it can lower costs and emissions. For this, a solar-assisted thermally driven cooling supply system with various designs and integrations of their cold storage unit is simulated dynamically through a whole year in Qassim region as the case study. The results show that a system design with double solar heat storage and double cold storage in parallel arrangement results in the best techno-economic-environmental performance. For this case, the levelized cost of cooling will be 383 USD/MWhr, which will be at least 3% lower than the typical hot/cold buffer tank design scenario.

Suggested Citation

  • Alrobaian, Abdulrahman A., 2023. "Impact of optimal sizing and integration of thermal energy storage in solar assisted energy systems," Renewable Energy, Elsevier, vol. 211(C), pages 761-771.
  • Handle: RePEc:eee:renene:v:211:y:2023:i:c:p:761-771
    DOI: 10.1016/j.renene.2023.05.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123006249
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.05.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Qiu, Guodong & Yu, Shipeng & Cai, Weihua, 2021. "A novel heating strategy and its optimization of a solar heating system for a commercial building in term of economy," Energy, Elsevier, vol. 221(C).
    2. Long, Xingle & Naminse, Eric Yaw & Du, Jianguo & Zhuang, Jincai, 2015. "Nonrenewable energy, renewable energy, carbon dioxide emissions and economic growth in China from 1952 to 2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 680-688.
    3. Malleswararao, K. & Aswin, N. & Srinivasa Murthy, S. & Dutta, Pradip, 2022. "Studies on long-term and buffer modes of operations of a thermal energy storage system using coupled metal hydrides," Energy, Elsevier, vol. 258(C).
    4. Bilardo, Matteo & Ferrara, Maria & Fabrizio, Enrico, 2022. "The role of solar cooling for nearly zero energy multifamily buildings: Performance analysis across different climates," Renewable Energy, Elsevier, vol. 194(C), pages 1343-1353.
    5. Oosthuizen, A.M. & Inglesi-Lotz, R., 2022. "The impact of policy priority flexibility on the speed of renewable energy adoption," Renewable Energy, Elsevier, vol. 194(C), pages 426-438.
    6. Sadi, Meisam & Chakravarty, Krishna Hara & Behzadi, Amirmohammad & Arabkoohsar, Ahmad, 2021. "Techno-economic-environmental investigation of various biomass types and innovative biomass-firing technologies for cost-effective cooling in India," Energy, Elsevier, vol. 219(C).
    7. Pommeret, Aude & Schubert, Katheline, 2022. "Optimal energy transition with variable and intermittent renewable electricity generation," Journal of Economic Dynamics and Control, Elsevier, vol. 134(C).
    8. Chen, Yuzhu & Xu, Jinzhao & Wang, Jun & Lund, Peter D., 2022. "Optimization of a weather-based energy system for high cooling and low heating conditions using different types of water-cooled chiller," Energy, Elsevier, vol. 252(C).
    9. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and humid climate: A multiple-case study analysis," Applied Energy, Elsevier, vol. 114(C), pages 353-365.
    10. Amiri Rad, Ehsan & Davoodi, Vajihe, 2021. "Thermo-economic evaluation of a hybrid solar-gas driven and air-cooled absorption chiller integrated with hot water production by a transient modeling," Renewable Energy, Elsevier, vol. 163(C), pages 1253-1264.
    11. Bahlawan, Hilal & Losi, Enzo & Manservigi, Lucrezia & Morini, Mirko & Pinelli, Michele & Spina, Pier Ruggero & Venturini, Mauro, 2022. "Optimization of a renewable energy plant with seasonal energy storage for the transition towards 100% renewable energy supply," Renewable Energy, Elsevier, vol. 198(C), pages 1296-1306.
    12. Behzadi, Amirmohammad & Arabkoohsar, Ahmad, 2020. "Feasibility study of a smart building energy system comprising solar PV/T panels and a heat storage unit," Energy, Elsevier, vol. 210(C).
    13. Rech, Sergio & Finco, Elisa & Lazzaretto, Andrea, 2020. "A multicriteria approach to choose the best renewable refrigeration system for food preservation," Renewable Energy, Elsevier, vol. 154(C), pages 368-384.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yassine Rami & Amine Allouhi, 2024. "Design, Economic, and Environmental Accounting Assessment of a Solar-Powered Cold Room for Fish Storage in Traditional Markets," Sustainability, MDPI, vol. 16(7), pages 1-22, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Khezr, Peyman & Menezes, Flávio, 2025. "Investment incentives in a wholesale electricity market with storage," Energy Economics, Elsevier, vol. 146(C).
    2. Wang, Peng & Sun, Junqing & Yoon, Sungmin & Zhao, Liang & Liang, Ruobing, 2024. "A global optimization method for data center air conditioning water systems based on predictive optimization control," Energy, Elsevier, vol. 295(C).
    3. Zhang, Ruiyu & Li, Zheng & Liu, Pei, 2025. "Modeling and optimization of a heating and cooling combined seasonal thermal energy storage system towards a carbon-neutral community: A university campus case study," Energy, Elsevier, vol. 319(C).
    4. Ambec, Stefan & Yang, Yuting, 2024. "Climate policy with electricity trade," Resource and Energy Economics, Elsevier, vol. 76(C).
    5. Xinxin Liu & Nan Li & Feng Liu & Hailin Mu & Longxi Li & Xiaoyu Liu, 2021. "Optimal Design on Fossil-to-Renewable Energy Transition of Regional Integrated Energy Systems under CO 2 Emission Abatement Control: A Case Study in Dalian, China," Energies, MDPI, vol. 14(10), pages 1-25, May.
    6. Chen, Yuzhu & Guo, Weimin & Zhang, Tianhu & Lund, Peter D. & Wang, Jun & Yang, Kun, 2024. "Carbon and economic prices optimization of a solar-gas coupling energy system with a modified non-dominated sorting genetic algorithm considering operating sequences of water-cooled chillers," Energy, Elsevier, vol. 301(C).
    7. Iuliana Petronela Gârdan & Adrian Micu & Carmen Adina Paștiu & Angela Eliza Micu & Daniel Adrian Gârdan, 2023. "Consumers’ Attitude towards Renewable Energy in the Context of the Energy Crisis," Energies, MDPI, vol. 16(2), pages 1-31, January.
    8. Liu, Yanfeng & Zhao, Yiting & Chen, Yaowen & Wang, Dengjia & Li, Yong & Yuan, Xipeng, 2022. "Design optimization of the solar heating system for office buildings based on life cycle cost in Qinghai-Tibet plateau of China," Energy, Elsevier, vol. 246(C).
    9. Tunahan Haciimamoglu & Oguzhan Sungur & Korkmaz Yildirim & Mustafa Yapar, 2025. "Rethinking the Climate Change–Inequality Nexus: The Role of Wealth Inequality, Economic Growth, and Renewable Energy in CO 2 Emissions," Sustainability, MDPI, vol. 17(8), pages 1-19, April.
    10. Radwan A. Almasri & Nidal H. Abu-Hamdeh & Abdullah Alajlan & Yazeed Alresheedi, 2022. "Utilizing a Domestic Water Tank to Make the Air Conditioning System in Residential Buildings More Sustainable in Hot Regions," Sustainability, MDPI, vol. 14(22), pages 1-19, November.
    11. Amin, Azka & bte Mohamed Yusoff, Nora Yusma & Peng, Sun & Magazzino, Cosimo & Sharif, Arshian & Kamran, Hafiz Waqas, 2025. "Driving sustainable development: The impact of energy transition, eco-innovation, mineral resources, and green growth on carbon emissions," Renewable Energy, Elsevier, vol. 238(C).
    12. Behzadi, Amirmohammad & Holmberg, Sture & Duwig, Christophe & Haghighat, Fariborz & Ooka, Ryozo & Sadrizadeh, Sasan, 2022. "Smart design and control of thermal energy storage in low-temperature heating and high-temperature cooling systems: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 166(C).
    13. Nadimi, Reza & Tokimatsu, Koji, 2019. "Potential energy saving via overall efficiency relying on quality of life," Applied Energy, Elsevier, vol. 233, pages 283-299.
    14. Wang, Xuan & Mi, Zhenhao & Li, Kang & Huang, Xiaodong & Bao, Wenjie & Song, Jinsong & Wang, Chengkai & Chen, Guoqing & Cao, Peng, 2024. "Design and transient analysis of renewable energy-based residential net-zero energy buildings with energy storage," Renewable Energy, Elsevier, vol. 220(C).
    15. Kheir Abadi, Majid & Davoodi, Vajihe & Deymi-Dashtebayaz, Mahdi & Ebrahimi-Moghadam, Amir, 2023. "Determining the best scenario for providing electrical, cooling, and hot water consuming of a building with utilizing a novel wind/solar-based hybrid system," Energy, Elsevier, vol. 273(C).
    16. Xiao-Ying Dong & Qiying Ran & Yu Hao, 2019. "On the nonlinear relationship between energy consumption and economic development in China: new evidence from panel data threshold estimations," Quality & Quantity: International Journal of Methodology, Springer, vol. 53(4), pages 1837-1857, July.
    17. Chen, Changhua & Luo, Yuqing & Zou, Hong & Huang, Junbing, 2023. "Understanding the driving factors and finding the pathway to mitigating carbon emissions in China's Yangtze River Delta region," Energy, Elsevier, vol. 278(PB).
    18. Zheng Fang & Marcin Wolski, 2021. "Human capital, energy and economic growth in China: evidence from multivariate nonlinear Granger causality tests," Empirical Economics, Springer, vol. 60(2), pages 607-632, February.
    19. Yang, Tianrun & Liu, Wen & Kramer, Gert Jan, 2024. "Seasonal thermal energy storage employing solar heat: A case study of Heilongjiang, China, exploring the transition to clean heating and renewable power integration," Energy, Elsevier, vol. 305(C).
    20. Sharma, Rajesh & Sinha, Avik & Kautish, Pradeep, 2020. "Does renewable energy consumption reduce ecological footprint? Evidence from eight developing countries of Asia," MPRA Paper 104277, University Library of Munich, Germany, revised 2020.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:211:y:2023:i:c:p:761-771. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.