IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v210y2023icp148-158.html
   My bibliography  Save this article

Performance enhancement of a galloping-based energy harvester with different groove depths on square bluff body

Author

Listed:
  • Siriyothai, Patcharakon
  • Kittichaikarn, Chawalit

Abstract

This paper focuses on the effects of a V-shaped groove depth on the performance of a galloping-based energy harvester. The study simulated air flow over cylindrical, square, and different depth grooved square bluff bodies using a computational fluid dynamics program with a user defined function added. An experiment using the particle-image velocimetry technique in a closed-loop wind tunnel was also conducted to validate and explain the results. The results show that the energy harvester and square bluff body with a ratio of 0.25 groove depth to the side generated the most power of 15.24 mW, which is 1.34 times higher than the power generated by the square bluff body at 9 m/s wind speed. This is because the groove on the windward side of the square bluff body increased the striking area of the fluid force and triggered the formation of a large vortex beside the bluff body. This results in a larger vibration amplitude and in an increased generation of electrical power. The discrepancy between the simulated and experimental results was also discovered to be due to a twist of the bluff body and hence a common used one-dimension oscillation assumption might be invalid.

Suggested Citation

  • Siriyothai, Patcharakon & Kittichaikarn, Chawalit, 2023. "Performance enhancement of a galloping-based energy harvester with different groove depths on square bluff body," Renewable Energy, Elsevier, vol. 210(C), pages 148-158.
  • Handle: RePEc:eee:renene:v:210:y:2023:i:c:p:148-158
    DOI: 10.1016/j.renene.2023.04.027
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004779
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.04.027?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaiyuan Zhao & Qichang Zhang & Wei Wang, 2019. "Optimization of Galloping Piezoelectric Energy Harvester with V-Shaped Groove in Low Wind Speed," Energies, MDPI, vol. 12(24), pages 1-18, December.
    2. Emmanuel Mbondo Binyet & Jen-Yuan Chang & Chih-Yung Huang, 2020. "Flexible Plate in the Wake of a Square Cylinder for Piezoelectric Energy Harvesting—Parametric Study Using Fluid–Structure Interaction Modeling," Energies, MDPI, vol. 13(10), pages 1-29, May.
    3. Saidur, R. & Rahim, N.A. & Islam, M.R. & Solangi, K.H., 2011. "Environmental impact of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2423-2430, June.
    4. Zhang, Baoshou & Mao, Zhaoyong & Wang, Liang & Fu, Song & Ding, Wenjun, 2021. "A novel V-shaped layout method for VIV hydrokinetic energy converters inspired by geese flying in a V-Formation," Energy, Elsevier, vol. 230(C).
    5. Dai, Kaoshan & Bergot, Anthony & Liang, Chao & Xiang, Wei-Ning & Huang, Zhenhua, 2015. "Environmental issues associated with wind energy – A review," Renewable Energy, Elsevier, vol. 75(C), pages 911-921.
    6. Wei, Chongfeng & Jing, Xingjian, 2017. "A comprehensive review on vibration energy harvesting: Modelling and realization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1-18.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Liu, Qi & Qin, Weiyang & Zhou, Zhiyong & Shang, Mengjie & Zhou, Honglei, 2023. "Harvesting low-speed wind energy by bistable snap-through and amplified inertial force," Energy, Elsevier, vol. 284(C).
    2. Sun, Hongjun & Yang, Zhen & Li, Jinxia & Ding, Hongbing & Lv, Pengfei, 2024. "Performance evaluation and optimal design for passive turbulence control-based hydrokinetic energy harvester using EWM-based TOPSIS," Energy, Elsevier, vol. 298(C).
    3. Sun, Wan & Wang, Yiheng & Liu, Yang & Su, Bo & Guo, Tong & Cheng, Guanggui & Zhang, Zhongqiang & Ding, Jianning & Seok, Jongwon, 2024. "Navigating the future of flow-induced vibration-based piezoelectric energy harvesting," Renewable and Sustainable Energy Reviews, Elsevier, vol. 201(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Moravec, David & Barták, Vojtěch & Puš, Vladimír & Wild, Jan, 2018. "Wind turbine impact on near-ground air temperature," Renewable Energy, Elsevier, vol. 123(C), pages 627-633.
    2. Diana Caporale & Caterina De Lucia & Luigi dell’Olio & Pasquale Pazienza, 2024. "Policy insights for wind energy from a choice experiment stated preference efficient design in Apulia region (Italy)," Economia Politica: Journal of Analytical and Institutional Economics, Springer;Fondazione Edison, vol. 41(3), pages 963-995, October.
    3. Landeta-Manzano, Beñat & Arana-Landín, Germán & Calvo, Pilar M. & Heras-Saizarbitoria, Iñaki, 2018. "Wind energy and local communities: A manufacturer’s efforts to gain acceptance," Energy Policy, Elsevier, vol. 121(C), pages 314-324.
    4. Ya Xu & Jiangqi Yuan & Daming Sun & Dailiang Xie, 2022. "Piezoelectric Harvesting of Fluid Kinetic Energy Based on Flow-Induced Oscillation," Energies, MDPI, vol. 15(23), pages 1-11, December.
    5. Enevoldsen, Peter, 2016. "Onshore wind energy in Northern European forests: Reviewing the risks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1251-1262.
    6. Huesca-Pérez, María Elena & Sheinbaum-Pardo, Claudia & Köppel, Johann, 2016. "Social implications of siting wind energy in a disadvantaged region – The case of the Isthmus of Tehuantepec, Mexico," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 952-965.
    7. Boretti, Alberto & Castelletto, Stefania, 2024. "Hydrogen energy storage requirements for solar and wind energy production to account for long-term variability," Renewable Energy, Elsevier, vol. 221(C).
    8. Teff-Seker, Y. & Berger-Tal, O. & Lehnardt, Y. & Teschner, N., 2022. "Noise pollution from wind turbines and its effects on wildlife: A cross-national analysis of current policies and planning regulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    9. Caporale, Diana & Sangiorgio, Valentino & Amodio, Alessandro & De Lucia, Caterina, 2020. "Multi-criteria and focus group analysis for social acceptance of wind energy," Energy Policy, Elsevier, vol. 140(C).
    10. Josimović, Boško & Cvjetić, Aleksandar & Furundžić, Danilo, 2021. "Strategic Environmental Assessment and the precautionary principle in the spatial planning of wind farms – European experience in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    11. Yousefi-Sahzabi, Amin & Unlu-Yucesoy, Eda & Sasaki, Kyuro & Yuosefi, Hossein & Widiatmojo, Arif & Sugai, Yuichi, 2017. "Turkish challenges for low-carbon society: Current status, government policies and social acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 596-608.
    12. Sebestyén, Viktor, 2021. "Renewable and Sustainable Energy Reviews: Environmental impact networks of renewable energy power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    13. Loretta Mastroeni & Maurizio Naldi & Pierluigi Vellucci, 2023. "Who pushes the discussion on wind energy? An analysis of self-reposting behaviour on Twitter," Quality & Quantity: International Journal of Methodology, Springer, vol. 57(2), pages 1763-1789, April.
    14. Tariq Ullah & Krzysztof Sobczak & Grzegorz Liśkiewicz & Amjid Khan, 2022. "Two-Dimensional URANS Numerical Investigation of Critical Parameters on a Pitch Oscillating VAWT Airfoil under Dynamic Stall," Energies, MDPI, vol. 15(15), pages 1-19, August.
    15. Martínez-Martínez, Yenisleidy & Dewulf, Jo & Casas-Ledón, Yannay, 2022. "GIS-based site suitability analysis and ecosystem services approach for supporting renewable energy development in south-central Chile," Renewable Energy, Elsevier, vol. 182(C), pages 363-376.
    16. Cheng Guo & Delin Wang, 2019. "Frequency Regulation and Coordinated Control for Complex Wind Power Systems," Complexity, Hindawi, vol. 2019, pages 1-12, May.
    17. Schumacher, Kim & Yang, Zhuoxiang, 2018. "The determinants of wind energy growth in the United States: Drivers and barriers to state-level development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 1-13.
    18. Villacreses, Geovanna & Gaona, Gabriel & Martínez-Gómez, Javier & Jijón, Diego Juan, 2017. "Wind farms suitability location using geographical information system (GIS), based on multi-criteria decision making (MCDM) methods: The case of continental Ecuador," Renewable Energy, Elsevier, vol. 109(C), pages 275-286.
    19. Moura Carneiro, F.O. & Barbosa Rocha, H.H. & Costa Rocha, P.A., 2013. "Investigation of possible societal risk associated with wind power generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 30-36.
    20. Lee, Kyung-Sook & Kim, Ju-Hee & Yoo, Seung-Hoon, 2021. "Would people pay a price premium for electricity from domestic wind power facilities? The case of South Korea," Energy Policy, Elsevier, vol. 156(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:210:y:2023:i:c:p:148-158. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.