IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp693-701.html

Two-stage lipid induction in the microalga Tetraselmis striata CTP4 upon exposure to different abiotic stresses

Author

Listed:
  • Monteiro, Ivo
  • Schüler, Lisa M.
  • Santos, Eunice
  • Pereira, Hugo
  • Schulze, Peter S.C.
  • Florindo, Cláudia
  • Varela, João
  • Barreira, Luísa

Abstract

Tetraselmis striata CTP4 is a euryhaline, robust, fast-growing microalga suitable for wastewater treatment and industrial production. Lipid production was induced through a two-stage cultivation strategy: a 1st stage under standard growth-promoting conditions (100 μmol photons m−2 s−1, salinity 36 ppt and 20 °C) to achieve high biomass concentration and a 2nd stage of 6 days for lipid induction by the application of abiotic stresses such as nutrient depletion, high light intensity (200 and 400 μmol photons m−2 s−1), high salinity (75 and 100 ppt), and extreme temperatures (5 and 35 °C). Although nutrient depletion always resulted in a decrease in biomass productivity, it had also the highest impact on lipid induction. The highest lipid content (43.2%) and lipid productivity (29.2 mg L−1 d−1) were obtained using a combination of nutrient depletion and high light intensity (400 μmol m−2 s−1). The fatty acid profile was mainly composed of C16:0 (palmitic), C18:1 (oleic) and C18:2 (linoleic) acids. The low content of unsaturated fatty acids and absence of C18:3 (linolenic) acid render the oil of this microalga suitable for biodiesel production, a renewable source of energy.

Suggested Citation

  • Monteiro, Ivo & Schüler, Lisa M. & Santos, Eunice & Pereira, Hugo & Schulze, Peter S.C. & Florindo, Cláudia & Varela, João & Barreira, Luísa, 2023. "Two-stage lipid induction in the microalga Tetraselmis striata CTP4 upon exposure to different abiotic stresses," Renewable Energy, Elsevier, vol. 208(C), pages 693-701.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:693-701
    DOI: 10.1016/j.renene.2023.03.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Dammak, Mouna & Ben Hlima, Hajer & Elleuch, Fatma & Pichon, Chantal & Michaud, Philippe & Fendri, Imen & Abdelkafi, Slim, 2021. "Flow cytometry assay to evaluate lipid production by the marine microalga Tetraselmis sp. using a two stage process," Renewable Energy, Elsevier, vol. 177(C), pages 280-289.
    2. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Zhang, Lei & Wang, Nan & Yang, Mei & Ding, Ke & Wang, Yong-Zhong & Huo, Danqun & Hou, Changjun, 2019. "Lipid accumulation and biodiesel quality of Chlorella pyrenoidosa under oxidative stress induced by nutrient regimes," Renewable Energy, Elsevier, vol. 143(C), pages 1782-1790.
    4. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    5. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pekkoh, Jeeraporn & Ruangrit, Khomsan & Aurepatipan, Nathapat & Duangjana, Kritsana & Sensupa, Sritip & Pumas, Chayakorn & Chaichana, Chatchawan & Pathom-aree, Wasu & Kato, Yasuo & Srinuanpan, Sirasit, 2024. "CO2 to green fuel converter: Photoautotrophic-cultivation of microalgae and its lipids conversion to biodiesel," Renewable Energy, Elsevier, vol. 222(C).
    2. Singh, Avinash & Singh, Savita & Singh, Sakshi & Prasad, Nitesh & Asthana, Ravi Kumar, 2025. "Harnessing bioenergy potential of Chlamydomonas reinhardtii: A comprehensive characterization and valorization of biomass towards energy conversion under circular bioeconomy," Renewable Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Poonam & Kumari, Sheena & Guldhe, Abhishek & Misra, Rohit & Rawat, Ismail & Bux, Faizal, 2016. "Trends and novel strategies for enhancing lipid accumulation and quality in microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1-16.
    2. Zhao, Yongteng & Qiao, Tengsheng & Gu, Dan & Zhu, Liyan & Yu, Xuya, 2022. "Stimulating biolipid production from the novel alga Ankistrodesmus sp. by coupling salt stress and chemical induction," Renewable Energy, Elsevier, vol. 183(C), pages 480-490.
    3. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    4. Leong, Wai-Hong & Lim, Jun-Wei & Lam, Man-Kee & Uemura, Yoshimitsu & Ho, Yeek-Chia, 2018. "Third generation biofuels: A nutritional perspective in enhancing microbial lipid production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 950-961.
    5. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    6. Prabhakar Sharma & Ajay Chhillar & Zafar Said & Saim Memon, 2021. "Exploring the Exhaust Emission and Efficiency of Algal Biodiesel Powered Compression Ignition Engine: Application of Box–Behnken and Desirability Based Multi-Objective Response Surface Methodology," Energies, MDPI, vol. 14(18), pages 1-22, September.
    7. Senem Onen Cinar & Zhi Kai Chong & Mehmet Ali Kucuker & Nils Wieczorek & Ugur Cengiz & Kerstin Kuchta, 2020. "Bioplastic Production from Microalgae: A Review," IJERPH, MDPI, vol. 17(11), pages 1-21, May.
    8. Patchimpet, Jaran & Simpson, Benjamin K. & Sangkharak, Kanokphorn & Klomklao, Sappasith, 2020. "Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera," Renewable Energy, Elsevier, vol. 153(C), pages 861-869.
    9. Peng, Nana & Gai, Chao & Peng, Chao, 2020. "Enhancing hydrogen-rich syngas production and energy recovery efficiency by integrating hydrothermal carbonization pretreatment with steam gasification," Energy, Elsevier, vol. 210(C).
    10. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    11. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    12. Mohd Noor, C.W. & Noor, M.M. & Mamat, R., 2018. "Biodiesel as alternative fuel for marine diesel engine applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 127-142.
    13. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    14. Andrade, L.A. & Batista, F.R.X. & Lira, T.S. & Barrozo, M.A.S. & Vieira, L.G.M., 2018. "Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii," Renewable Energy, Elsevier, vol. 119(C), pages 731-740.
    15. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    16. Marcin Dębowski & Marcin Zieliński & Joanna Kazimierowicz & Natalia Kujawska & Szymon Talbierz, 2020. "Microalgae Cultivation Technologies as an Opportunity for Bioenergetic System Development—Advantages and Limitations," Sustainability, MDPI, vol. 12(23), pages 1-37, November.
    17. Marwa M. El-Dalatony & El-Sayed Salama & Mayur B. Kurade & Sedky H. A. Hassan & Sang-Eun Oh & Sunjoon Kim & Byong-Hun Jeon, 2017. "Utilization of Microalgal Biofractions for Bioethanol, Higher Alcohols, and Biodiesel Production: A Review," Energies, MDPI, vol. 10(12), pages 1-19, December.
    18. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    19. Marianela Cobos & Jae D. Paredes & J. Dylan Maddox & Gabriel Vargas-Arana & Leenin Flores & Carla P. Aguilar & Jorge L. Marapara & Juan C. Castro, 2017. "Isolation and Characterization of Native Microalgae from the Peruvian Amazon with Potential for Biodiesel Production," Energies, MDPI, vol. 10(2), pages 1-16, February.
    20. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.

    More about this item

    Keywords

    ;
    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:693-701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.