IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v208y2023icp693-701.html
   My bibliography  Save this article

Two-stage lipid induction in the microalga Tetraselmis striata CTP4 upon exposure to different abiotic stresses

Author

Listed:
  • Monteiro, Ivo
  • Schüler, Lisa M.
  • Santos, Eunice
  • Pereira, Hugo
  • Schulze, Peter S.C.
  • Florindo, Cláudia
  • Varela, João
  • Barreira, Luísa

Abstract

Tetraselmis striata CTP4 is a euryhaline, robust, fast-growing microalga suitable for wastewater treatment and industrial production. Lipid production was induced through a two-stage cultivation strategy: a 1st stage under standard growth-promoting conditions (100 μmol photons m−2 s−1, salinity 36 ppt and 20 °C) to achieve high biomass concentration and a 2nd stage of 6 days for lipid induction by the application of abiotic stresses such as nutrient depletion, high light intensity (200 and 400 μmol photons m−2 s−1), high salinity (75 and 100 ppt), and extreme temperatures (5 and 35 °C). Although nutrient depletion always resulted in a decrease in biomass productivity, it had also the highest impact on lipid induction. The highest lipid content (43.2%) and lipid productivity (29.2 mg L−1 d−1) were obtained using a combination of nutrient depletion and high light intensity (400 μmol m−2 s−1). The fatty acid profile was mainly composed of C16:0 (palmitic), C18:1 (oleic) and C18:2 (linoleic) acids. The low content of unsaturated fatty acids and absence of C18:3 (linolenic) acid render the oil of this microalga suitable for biodiesel production, a renewable source of energy.

Suggested Citation

  • Monteiro, Ivo & Schüler, Lisa M. & Santos, Eunice & Pereira, Hugo & Schulze, Peter S.C. & Florindo, Cláudia & Varela, João & Barreira, Luísa, 2023. "Two-stage lipid induction in the microalga Tetraselmis striata CTP4 upon exposure to different abiotic stresses," Renewable Energy, Elsevier, vol. 208(C), pages 693-701.
  • Handle: RePEc:eee:renene:v:208:y:2023:i:c:p:693-701
    DOI: 10.1016/j.renene.2023.03.103
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148123004068
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2023.03.103?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dammak, Mouna & Ben Hlima, Hajer & Elleuch, Fatma & Pichon, Chantal & Michaud, Philippe & Fendri, Imen & Abdelkafi, Slim, 2021. "Flow cytometry assay to evaluate lipid production by the marine microalga Tetraselmis sp. using a two stage process," Renewable Energy, Elsevier, vol. 177(C), pages 280-289.
    2. Aziz, Md Maniruzzaman A. & Kassim, Khairul Anuar & Shokravi, Zahra & Jakarni, Fauzan Mohd & Liu, Hong Yuan & Zaini, Nabilah & Tan, Lian See & Islam, A.B.M. Saiful & Shokravi, Hoofar, 2020. "Two-stage cultivation strategy for simultaneous increases in growth rate and lipid content of microalgae: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    3. Kalpesh K. Sharma & Holger Schuhmann & Peer M. Schenk, 2012. "High Lipid Induction in Microalgae for Biodiesel Production," Energies, MDPI, vol. 5(5), pages 1-22, May.
    4. Singh, Bhaskar & Guldhe, Abhishek & Rawat, Ismail & Bux, Faizal, 2014. "Towards a sustainable approach for development of biodiesel from plant and microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 216-245.
    5. Zhang, Lei & Wang, Nan & Yang, Mei & Ding, Ke & Wang, Yong-Zhong & Huo, Danqun & Hou, Changjun, 2019. "Lipid accumulation and biodiesel quality of Chlorella pyrenoidosa under oxidative stress induced by nutrient regimes," Renewable Energy, Elsevier, vol. 143(C), pages 1782-1790.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pekkoh, Jeeraporn & Ruangrit, Khomsan & Aurepatipan, Nathapat & Duangjana, Kritsana & Sensupa, Sritip & Pumas, Chayakorn & Chaichana, Chatchawan & Pathom-aree, Wasu & Kato, Yasuo & Srinuanpan, Sirasit, 2024. "CO2 to green fuel converter: Photoautotrophic-cultivation of microalgae and its lipids conversion to biodiesel," Renewable Energy, Elsevier, vol. 222(C).
    2. Singh, Avinash & Singh, Savita & Singh, Sakshi & Prasad, Nitesh & Asthana, Ravi Kumar, 2025. "Harnessing bioenergy potential of Chlamydomonas reinhardtii: A comprehensive characterization and valorization of biomass towards energy conversion under circular bioeconomy," Renewable Energy, Elsevier, vol. 240(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Poonam & Kumari, Sheena & Guldhe, Abhishek & Misra, Rohit & Rawat, Ismail & Bux, Faizal, 2016. "Trends and novel strategies for enhancing lipid accumulation and quality in microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1-16.
    2. Zhao, Yongteng & Qiao, Tengsheng & Gu, Dan & Zhu, Liyan & Yu, Xuya, 2022. "Stimulating biolipid production from the novel alga Ankistrodesmus sp. by coupling salt stress and chemical induction," Renewable Energy, Elsevier, vol. 183(C), pages 480-490.
    3. Behnam Tabatabai & Afua Adusei & Alok Kumar Shrivastava & Prashant Kumar Singh & Viji Sitther, 2020. "Nitrogen Deprivation in Fremyella diplosiphon Augments Lipid Production without Affecting Growth," Energies, MDPI, vol. 13(21), pages 1-12, November.
    4. Visva Bharati Barua & Mariya Munir, 2021. "A Review on Synchronous Microalgal Lipid Enhancement and Wastewater Treatment," Energies, MDPI, vol. 14(22), pages 1-20, November.
    5. Patchimpet, Jaran & Simpson, Benjamin K. & Sangkharak, Kanokphorn & Klomklao, Sappasith, 2020. "Optimization of process variables for the production of biodiesel by transesterification of used cooking oil using lipase from Nile tilapia viscera," Renewable Energy, Elsevier, vol. 153(C), pages 861-869.
    6. Patel, Akash & Gami, Bharat & Patel, Pankaj & Patel, Beena, 2017. "Microalgae: Antiquity to era of integrated technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 535-547.
    7. Xing, Hui & Spence, Stephen & Chen, Hua, 2020. "A comprehensive review on countermeasures for CO2 emissions from ships," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    8. Zhang, X.L. & Yan, S. & Tyagi, R.D. & Surampalli, R.Y., 2013. "Biodiesel production from heterotrophic microalgae through transesterification and nanotechnology application in the production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 216-223.
    9. Andrade, L.A. & Batista, F.R.X. & Lira, T.S. & Barrozo, M.A.S. & Vieira, L.G.M., 2018. "Characterization and product formation during the catalytic and non-catalytic pyrolysis of the green microalgae Chlamydomonas reinhardtii," Renewable Energy, Elsevier, vol. 119(C), pages 731-740.
    10. Ziyad, Ben Ahmed & Yousfi, Mohamed & Vander Heyden, Yvan, 2022. "Effects of growing region and maturity stages on oil yield, fatty acid profile and tocopherols of Pistacia atlantica Desf. fruit and their implications on resulting biodiesel," Renewable Energy, Elsevier, vol. 181(C), pages 167-181.
    11. Nirmala, N. & Dawn, S.S., 2021. "Optimization of Chlorella variabilis. MK039712.1 lipid transesterification using Response Surface Methodology and analytical characterization of biodiesel," Renewable Energy, Elsevier, vol. 179(C), pages 1663-1673.
    12. Guldhe, Abhishek & Singh, Poonam & Kumari, Sheena & Rawat, Ismail & Permaul, Kugen & Bux, Faizal, 2016. "Biodiesel synthesis from microalgae using immobilized Aspergillus niger whole cell lipase biocatalyst," Renewable Energy, Elsevier, vol. 85(C), pages 1002-1010.
    13. Kulvinder Bajwa & Narsi R Bishnoi & Anita Kirrolia, 2018. "Evaluation of Nutrient Stress (Nitrogen, Phosphorus Regimes) on Physio-Biochemical Parameters of Oleaginous Micro algal Strains and SEM Study under Nutrient Stress," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 10(1), pages 01-07, April.
    14. Taher, Hanifa & Al-Zuhair, Sulaiman & Al-Marzouqi, Ali & Haik, Yousef & Farid, Mohammed, 2015. "Growth of microalgae using CO2 enriched air for biodiesel production in supercritical CO2," Renewable Energy, Elsevier, vol. 82(C), pages 61-70.
    15. Sigita Vaičiulytė & Giulia Padovani & Jolanta Kostkevičienė & Pietro Carlozzi, 2014. "Batch Growth of Chlorella Vulgaris CCALA 896 versus Semi-Continuous Regimen for Enhancing Oil-Rich Biomass Productivity," Energies, MDPI, vol. 7(6), pages 1-18, June.
    16. Behera, Bunushree & Unpaprom, Yuwalee & Ramaraj, Rameshprabu & Maniam, Gaanty Pragas & Govindan, Natanamurugaraj & Paramasivan, Balasubramanian, 2021. "Integrated biomolecular and bioprocess engineering strategies for enhancing the lipid yield from microalgae," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    17. Hossain, S. M. Zakir & Sultana, Nahid & Razzak, Shaikh A. & Hossain, Mohammad M., 2022. "Modeling and multi-objective optimization of microalgae biomass production and CO2 biofixation using hybrid intelligence approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    18. Chen, Jiaxin & Li, Ji & Dong, Wenyi & Zhang, Xiaolei & Tyagi, Rajeshwar D. & Drogui, Patrick & Surampalli, Rao Y., 2018. "The potential of microalgae in biodiesel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 336-346.
    19. Ido, Alexander L. & de Luna, Mark Daniel G. & Capareda, Sergio C. & Maglinao, Amado L. & Nam, Hyungseok, 2018. "Application of central composite design in the optimization of lipid yield from Scenedesmus obliquus microalgae by ultrasound-assisted solvent extraction," Energy, Elsevier, vol. 157(C), pages 949-956.
    20. Das, Arpita & Li, Hui & Kataki, Rupam & Agrawal, Pratibha S. & Moyon, N.S. & Gurunathan, Baskar & Rokhum, Samuel Lalthazuala, 2023. "Terminalia arjuna bark – A highly efficient renewable heterogeneous base catalyst for biodiesel production," Renewable Energy, Elsevier, vol. 212(C), pages 185-196.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:208:y:2023:i:c:p:693-701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.