IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v200y2022icp1447-1457.html
   My bibliography  Save this article

Numerical analysis and experimental study on the thermoelectric characteristics of the Al–Si alloy used for building energy storage tile

Author

Listed:
  • Tong, Yueheng
  • Yang, Wei

Abstract

This paper aims to explore the feasibility of the silicon aluminum (Al–Si) alloy for usage as a thermoelectric tile on building roofs. Through the simulation of the heat conduction characteristics and temperature field distribution of the step-shaped Al–Si alloy sample, the effects of the thickness, material, and shape of the Al–Si alloy sample on its thermal conversion efficiency and temperature field distribution characteristics of continuous solar irradiation were studied. The energy conversion characteristics of the Al–Si alloy sample combined with a thermoelectric generator (TEG) were investigated by numerical analysis and experiment. The results show that the Al–Si alloy sample with a thickness of 10 mm had a good heat storage efficiency. Also, the Al–Si alloy tile with a plane shaped solar irradiation surface and the back-sun surface with a certain number of bosses has a better heat transfer efficiency. Through experiment and calculation demonstrate that an Al–Si alloy tile with 500 mm × 500 mm area could generate 1.64 W electric power.

Suggested Citation

  • Tong, Yueheng & Yang, Wei, 2022. "Numerical analysis and experimental study on the thermoelectric characteristics of the Al–Si alloy used for building energy storage tile," Renewable Energy, Elsevier, vol. 200(C), pages 1447-1457.
  • Handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1447-1457
    DOI: 10.1016/j.renene.2022.10.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122015610
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.10.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Al-Nimr, Moh'd A. & Tashtoush, Bourhan M. & Jaradat, Ahmad A., 2015. "Modeling and simulation of thermoelectric device working as a heat pump and an electric generator under Mediterranean climate," Energy, Elsevier, vol. 90(P2), pages 1239-1250.
    2. Petru Adrian Cotfas & Daniel Tudor Cotfas, 2020. "Comprehensive Review of Methods and Instruments for Photovoltaic–Thermoelectric Generator Hybrid System Characterization," Energies, MDPI, vol. 13(22), pages 1-32, November.
    3. Lee, Taesoo D. & Ebong, Abasifreke U., 2017. "A review of thin film solar cell technologies and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 1286-1297.
    4. Fitriani, & Ovik, R. & Long, B.D. & Barma, M.C. & Riaz, M. & Sabri, M.F.M. & Said, S.M. & Saidur, R., 2016. "A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 635-659.
    5. Liu, Jia & Chen, Xi & Yang, Hongxing & Li, Yutong, 2020. "Energy storage and management system design optimization for a photovoltaic integrated low-energy building," Energy, Elsevier, vol. 190(C).
    6. Hassan Gholami & Harald Nils Røstvik & Koen Steemers, 2021. "The Contribution of Building-Integrated Photovoltaics (BIPV) to the Concept of Nearly Zero-Energy Cities in Europe: Potential and Challenges Ahead," Energies, MDPI, vol. 14(19), pages 1-22, September.
    7. Keoleian, Gregory A. & Lewis, Geoffrey McD., 2003. "Modeling the life cycle energy and environmental performance of amorphous silicon BIPV roofing in the US," Renewable Energy, Elsevier, vol. 28(2), pages 271-293.
    8. Herrando, María & Pantaleo, Antonio M. & Wang, Kai & Markides, Christos N., 2019. "Solar combined cooling, heating and power systems based on hybrid PVT, PV or solar-thermal collectors for building applications," Renewable Energy, Elsevier, vol. 143(C), pages 637-647.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    2. Woo-Gyun Shin & Ju-Young Shin & Hye-Mi Hwang & Chi-Hong Park & Suk-Whan Ko, 2022. "Power Generation Prediction of Building-Integrated Photovoltaic System with Colored Modules Using Machine Learning," Energies, MDPI, vol. 15(7), pages 1-17, April.
    3. Kazemian, Arash & Khatibi, Meysam & Ma, Tao & Peng, Jinqing & Hongxing, Yang, 2023. "A thermal performance-enhancing strategy of photovoltaic thermal systems by applying surface area partially covered by solar cells," Applied Energy, Elsevier, vol. 329(C).
    4. Zhao, Qin & Zhang, Houcheng & Hu, Ziyang & Hou, Shujin, 2021. "Performance evaluation of a new hybrid system consisting of a photovoltaic module and an absorption heat transformer for electricity production and heat upgrading," Energy, Elsevier, vol. 216(C).
    5. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    6. Sivaraman, Deepak & Keoleian, Gregory A., 2010. "Photovoltaic (PV) electricity: Comparative analyses of CO2 abatement at different fuel mix scales in the US," Energy Policy, Elsevier, vol. 38(10), pages 5708-5718, October.
    7. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    8. Jiyoung Eum & Yongki Kim, 2020. "Analysis on Operation Modes of Residential BESS with Balcony-PV for Apartment Houses in Korea," Sustainability, MDPI, vol. 13(1), pages 1-9, December.
    9. Daniel Sanin-Villa & Oscar D. Monsalve-Cifuentes & Elkin E. Henao-Bravo, 2021. "Evaluation of Thermoelectric Generators under Mismatching Conditions," Energies, MDPI, vol. 14(23), pages 1-20, December.
    10. Najjaran, Ahmad & Freeman, James & Ramos, Alba & Markides, Christos N., 2019. "Experimental investigation of an ammonia-water-hydrogen diffusion absorption refrigerator," Applied Energy, Elsevier, vol. 256(C).
    11. Hammond, Geoffrey P. & Harajli, Hassan A. & Jones, Craig I. & Winnett, Adrian B., 2012. "Whole systems appraisal of a UK Building Integrated Photovoltaic (BIPV) system: Energy, environmental, and economic evaluations," Energy Policy, Elsevier, vol. 40(C), pages 219-230.
    12. Das, Barun K. & Al-Abdeli, Yasir M. & Kothapalli, Ganesh, 2021. "Integrating renewables into stand-alone hybrid systems meeting electric, heating, and cooling loads: A case study," Renewable Energy, Elsevier, vol. 180(C), pages 1222-1236.
    13. Hansol Lim & Seong-Yong Cheon & Jae-Weon Jeong, 2018. "Empirical Analysis for the Heat Exchange Effectiveness of a Thermoelectric Liquid Cooling and Heating Unit," Energies, MDPI, vol. 11(3), pages 1-14, March.
    14. Sepúlveda-Mora, Sergio B. & Hegedus, Steven, 2021. "Making the case for time-of-use electric rates to boost the value of battery storage in commercial buildings with grid connected PV systems," Energy, Elsevier, vol. 218(C).
    15. Yiqing Dai & Yan Yin & Yundi Lu, 2021. "Strategies to Facilitate Photovoltaic Applications in Road Structures for Energy Harvesting," Energies, MDPI, vol. 14(21), pages 1-14, October.
    16. Khosravi, A. & Santasalo-Aarnio, A. & Syri, S., 2021. "Optimal technology for a hybrid biomass/solar system for electricity generation and desalination in Brazil," Energy, Elsevier, vol. 234(C).
    17. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    18. Ma, Tao & Zhang, Yijie & Gu, Wenbo & Xiao, Gang & Yang, Hongxing & Wang, Shuxiao, 2022. "Strategy comparison and techno-economic evaluation of a grid-connected photovoltaic-battery system," Renewable Energy, Elsevier, vol. 197(C), pages 1049-1060.
    19. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    20. Ivo Araújo & Leonel J. R. Nunes & António Curado, 2023. "Preliminary Approach for the Development of Sustainable University Campuses: A Case Study Based on the Mitigation of Greenhouse Gas Emissions," Sustainability, MDPI, vol. 15(6), pages 1-18, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:200:y:2022:i:c:p:1447-1457. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.