IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v198y2022icp1008-1020.html
   My bibliography  Save this article

Assessment of prototype lightweight photovoltaic modules after over 1-year field test in Polish conditions

Author

Listed:
  • Mik, Krzysztof
  • Zawadzki, Paweł
  • Tarłowski, Jan
  • Bykuć, Sebastian

Abstract

The compliance with international standards does not necessarily ensure a long-term reliability of photovoltaic modules. Field tests are required to make the standard tests more adjusted to the evaluation of new concepts. Numerous researches focus on long-term performance of standard modules, but only few studies are dedicated to lightweight modules. Therefore, the field operation of a PV system consisting of 28 lightweight modules of 4 different types (denoted as P1, P2, P3 and P4) has been being monitored for a year in warm temperate climate conditions. Over this period, the modules were tested by visual inspection, thermography and electroluminescence imaging and their electrical parameters were measured to compare results with the outcome of simulations in PVsyst. Visual inspections revealed yellowing and delamination of a few P2 and P4 modules because of issues with EVA foil. Thermography exposed many hot spots and failure of substrings in case of P2 modules. Also, the electroluminescence imaging showed numerous defects, mostly various micro cracks, which affected all modules’ types. Nevertheless, excluding P2 modules, the others generated higher yield than estimated by the simulations. Analysing year-to-year degradation, results for P3 and P4 were in line with results predicted for standard PV modules in similar climates.

Suggested Citation

  • Mik, Krzysztof & Zawadzki, Paweł & Tarłowski, Jan & Bykuć, Sebastian, 2022. "Assessment of prototype lightweight photovoltaic modules after over 1-year field test in Polish conditions," Renewable Energy, Elsevier, vol. 198(C), pages 1008-1020.
  • Handle: RePEc:eee:renene:v:198:y:2022:i:c:p:1008-1020
    DOI: 10.1016/j.renene.2022.08.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122012794
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.08.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ferroni, Ferruccio & Hopkirk, Robert J., 2016. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation," Energy Policy, Elsevier, vol. 94(C), pages 336-344.
    2. Aghaei, M. & Fairbrother, A. & Gok, A. & Ahmad, S. & Kazim, S. & Lobato, K. & Oreski, G. & Reinders, A. & Schmitz, J. & Theelen, M. & Yilmaz, P. & Kettle, J., 2022. "Review of degradation and failure phenomena in photovoltaic modules," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Krzysztof Mik & Paweł Zawadzki & Jan Tarłowski & Marcin Bugaj & Piotr Grygiel & Sebastian Bykuć, 2021. "Multifaceted Analyses of Four Different Prototype Lightweight Photovoltaic Modules of Novel Structure," Energies, MDPI, vol. 14(8), pages 1-16, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lukáš Režný & Vladimír Bureš, 2019. "Energy Transition Scenarios and Their Economic Impacts in the Extended Neoclassical Model of Economic Growth," Sustainability, MDPI, vol. 11(13), pages 1-25, July.
    2. Krzysztof Mik & Paweł Zawadzki & Jan Tarłowski & Marcin Bugaj & Piotr Grygiel & Sebastian Bykuć, 2021. "Multifaceted Analyses of Four Different Prototype Lightweight Photovoltaic Modules of Novel Structure," Energies, MDPI, vol. 14(8), pages 1-16, April.
    3. Padmanathan K. & Uma Govindarajan & Vigna K. Ramachandaramurthy & Sudar Oli Selvi T., 2017. "Multiple Criteria Decision Making (MCDM) Based Economic Analysis of Solar PV System with Respect to Performance Investigation for Indian Market," Sustainability, MDPI, vol. 9(5), pages 1-19, May.
    4. David J. Murphy & Marco Raugei & Michael Carbajales-Dale & Brenda Rubio Estrada, 2022. "Energy Return on Investment of Major Energy Carriers: Review and Harmonization," Sustainability, MDPI, vol. 14(12), pages 1-20, June.
    5. Sinn, Hans-Werner, 2017. "Buffering volatility: A study on the limits of Germany's energy revolution," European Economic Review, Elsevier, vol. 99(C), pages 130-150.
    6. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    7. Koppelaar, R.H.E.M., 2017. "Solar-PV energy payback and net energy: Meta-assessment of study quality, reproducibility, and results harmonization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 1241-1255.
    8. Sampaio, Priscila Gonçalves Vasconcelos & González, Mario Orestes Aguirre, 2017. "Photovoltaic solar energy: Conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 590-601.
    9. Carlos de Castro & Iñigo Capellán-Pérez, 2020. "Standard, Point of Use, and Extended Energy Return on Energy Invested (EROI) from Comprehensive Material Requirements of Present Global Wind, Solar, and Hydro Power Technologies," Energies, MDPI, vol. 13(12), pages 1-43, June.
    10. Raugei, Marco & Sgouridis, Sgouris & Murphy, David & Fthenakis, Vasilis & Frischknecht, Rolf & Breyer, Christian & Bardi, Ugo & Barnhart, Charles & Buckley, Alastair & Carbajales-Dale, Michael & Csala, 2017. "Energy Return on Energy Invested (ERoEI) for photovoltaic solar systems in regions of moderate insolation: A comprehensive response," Energy Policy, Elsevier, vol. 102(C), pages 377-384.
    11. V S Bharath Kurukuru & Ahteshamul Haque & Arun Kumar Tripathy & Mohammed Ali Khan, 2022. "Machine learning framework for photovoltaic module defect detection with infrared images," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 13(4), pages 1771-1787, August.
    12. Patrick Moriarty & Damon Honnery, 2019. "Energy Accounting for a Renewable Energy Future," Energies, MDPI, vol. 12(22), pages 1-16, November.
    13. Tuhibur Rahman & Ahmed Al Mansur & Molla Shahadat Hossain Lipu & Md. Siddikur Rahman & Ratil H. Ashique & Mohamad Abou Houran & Rajvikram Madurai Elavarasan & Eklas Hossain, 2023. "Investigation of Degradation of Solar Photovoltaics: A Review of Aging Factors, Impacts, and Future Directions toward Sustainable Energy Management," Energies, MDPI, vol. 16(9), pages 1-30, April.
    14. Buus, Tomáš, 2017. "Energy efficiency and energy prices: A general mathematical framework," Energy, Elsevier, vol. 139(C), pages 743-754.
    15. Putri Nor Liyana Mohamad Radzi & Muhammad Naveed Akhter & Saad Mekhilef & Noraisyah Mohamed Shah, 2023. "Review on the Application of Photovoltaic Forecasting Using Machine Learning for Very Short- to Long-Term Forecasting," Sustainability, MDPI, vol. 15(4), pages 1-21, February.
    16. Ateekh Ur Rehman, 2023. "Solar Panel Cooling System Evaluation: Visual PROMETHEE Multi-Criteria Decision-Making Approach," Sustainability, MDPI, vol. 15(17), pages 1-25, August.
    17. Syrodoy, S.V. & Kuznetsov, G.V. & Gutareva, N. Yu & Nigay (Ivanova), N.A., 2022. "Mathematical modeling of the thermochemical processes of sequestration of SOx when burning the particles of the coal and wood mixture," Renewable Energy, Elsevier, vol. 185(C), pages 1392-1409.
    18. Moriarty, Patrick & Honnery, Damon, 2019. "Ecosystem maintenance energy and the need for a green EROI," Energy Policy, Elsevier, vol. 131(C), pages 229-234.
    19. Ateş, Ali Murat, 2022. "Unlocking the floating photovoltaic potential of Türkiye's hydroelectric power plants," Renewable Energy, Elsevier, vol. 199(C), pages 1495-1509.
    20. Masoud Emamian & Aref Eskandari & Mohammadreza Aghaei & Amir Nedaei & Amirmohammad Moradi Sizkouhi & Jafar Milimonfared, 2022. "Cloud Computing and IoT Based Intelligent Monitoring System for Photovoltaic Plants Using Machine Learning Techniques," Energies, MDPI, vol. 15(9), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:198:y:2022:i:c:p:1008-1020. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.