IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v196y2022icp1-14.html
   My bibliography  Save this article

Insights into the decomposition kinetics of groundnut shell: An advanced isoconversional approach

Author

Listed:
  • Mishra, Garima
  • Bhaskar, Thallada

Abstract

In this work, the thermal decomposition kinetics of groundnut shell is investigated using a novel isoconversional approach. It combines the mathematical deconvolution approach with the isoconversional kinetic analysis methods. The thermogravimetric data of groundnut shells at six different heating rates ranging from 5 to 40 K min−1 has been used to make kinetic and thermodynamic predictions for the pyrolysis process. Extensive results on effective activation energy, pre-exponential factor, reaction mechanism, free energy change, entropy change and enthalpy of the process are discussed in detail. Groundnut pyrolysis is envisioned to occur via the independent decomposition of three pseudocomponents, i.e., cellulose, hemicellulose, and lignin. The estimated values of activation energy for each pseudocomponent show a weak dependence on conversion. The model predicts average activation energy of 126.17, 125.41, and 80.04 kJ mol−1 for the first, second, and third pseudocomponent. The decomposition of cellulose and hemicellulose is observed to follow first and second-order kinetics respectively. The lignin decomposition is governed by a three-dimensional diffusion-based model. The work demonstrates an efficient, novel strategy for identifying the prominent independent reactions occurring in the overall decomposition process of biomass. The kinetic and thermodynamic results presented here are crucial for designing pyrolysis reactors with groundnut shells as the potential feedstock.

Suggested Citation

  • Mishra, Garima & Bhaskar, Thallada, 2022. "Insights into the decomposition kinetics of groundnut shell: An advanced isoconversional approach," Renewable Energy, Elsevier, vol. 196(C), pages 1-14.
  • Handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1-14
    DOI: 10.1016/j.renene.2022.06.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122009478
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.06.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aghbashlo, Mortaza & Almasi, Fatemeh & Jafari, Ali & Nadian, Mohammad Hossein & Soltanian, Salman & Lam, Su Shiung & Tabatabaei, Meisam, 2021. "Describing biomass pyrolysis kinetics using a generic hybrid intelligent model: A critical stage in sustainable waste-oriented biorefineries," Renewable Energy, Elsevier, vol. 170(C), pages 81-91.
    2. Jacques Lédé, 2010. "Biomass Pyrolysis: Comments on Some Sources of Confusions in the Definitions of Temperatures and Heating Rates," Energies, MDPI, vol. 3(4), pages 1-13, April.
    3. Cai, Junmeng & Xu, Di & Dong, Zhujun & Yu, Xi & Yang, Yang & Banks, Scott W. & Bridgwater, Anthony V., 2018. "Processing thermogravimetric analysis data for isoconversional kinetic analysis of lignocellulosic biomass pyrolysis: Case study of corn stalk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2705-2715.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Luo, Laipeng & Zhang, Zhiyi & Li, Chong & Nishu, & He, Fang & Zhang, Xingguang & Cai, Junmeng, 2021. "Insight into master plots method for kinetic analysis of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 233(C).
    2. Fan, Honggang & Gu, Jing & Wang, Yazhuo & Yuan, Haoran & Chen, Yong, 2022. "Insight into the pyrolysis kinetics of cellulose, xylan and lignin with the addition of potassium and calcium based on distributed activation energy model," Energy, Elsevier, vol. 243(C).
    3. Zhang, Zhiqing & Duan, Hanqi & Zhang, Youjun & Guo, Xiaojuan & Yu, Xi & Zhang, Xingguang & Rahman, Md. Maksudur & Cai, Junmeng, 2020. "Investigation of kinetic compensation effect in lignocellulosic biomass torrefaction: Kinetic and thermodynamic analyses," Energy, Elsevier, vol. 207(C).
    4. Zhang, Zhiyi & Li, Yingkai & Luo, Laipeng & Yellezuome, Dominic & Rahman, Md Maksudur & Zou, Jianfeng & Hu, Hangli & Cai, Junmeng, 2023. "Insight into kinetic and Thermodynamic Analysis methods for lignocellulosic biomass pyrolysis," Renewable Energy, Elsevier, vol. 202(C), pages 154-171.
    5. Magdalena Matusiak & Radosław Ślęzak & Stanisław Ledakowicz, 2020. "Thermogravimetric Kinetics of Selected Energy Crops Pyrolysis," Energies, MDPI, vol. 13(15), pages 1-15, August.
    6. Fidalgo, B. & Chilmeran, M. & Somorin, T. & Sowale, A. & Kolios, A. & Parker, A. & Williams, L. & Collins, M. & McAdam, E.J. & Tyrrel, S., 2019. "Non-isothermal thermogravimetric kinetic analysis of the thermochemical conversion of human faeces," Renewable Energy, Elsevier, vol. 132(C), pages 1177-1184.
    7. João Silva & Senhorinha Teixeira & José Teixeira, 2023. "A Review of Biomass Thermal Analysis, Kinetics and Product Distribution for Combustion Modeling: From the Micro to Macro Perspective," Energies, MDPI, vol. 16(18), pages 1-23, September.
    8. Duan, Hanqi & Zhang, Zhiqing & Rahman, Md Maksudur & Guo, Xiaojuan & Zhang, Xingguang & Cai, Junmeng, 2020. "Insight into torrefaction of woody biomass: Kinetic modeling using pattern search method," Energy, Elsevier, vol. 201(C).
    9. Ma, Cheng & Zhao, Yuzhen & Lang, Tingting & Zou, Chong & Zhao, Junxue & Miao, Zongcheng, 2023. "Pyrolysis characteristics of low-rank coal in a low-nitrogen pyrolysis atmosphere and properties of the prepared chars," Energy, Elsevier, vol. 277(C).
    10. Fonseca, Frederico G. & Soares Dias, Ana P., 2021. "Almond shells: Catalytic fixed-bed pyrolysis and volatilization kinetics," Renewable Energy, Elsevier, vol. 180(C), pages 1380-1390.
    11. Xie, Wen & Su, Jing & Zhang, Xiangkun & Li, Tan & Wang, Cong & Yuan, Xiangzhou & Wang, Kaige, 2023. "Investigating kinetic behavior and reaction mechanism on autothermal pyrolysis of polyethylene plastic," Energy, Elsevier, vol. 269(C).
    12. Yang, Y. & Heaven, S. & Venetsaneas, N. & Banks, C.J. & Bridgwater, A.V., 2018. "Slow pyrolysis of organic fraction of municipal solid waste (OFMSW): Characterisation of products and screening of the aqueous liquid product for anaerobic digestion," Applied Energy, Elsevier, vol. 213(C), pages 158-168.
    13. Pomeroy, Brett & Grilc, Miha & Likozar, Blaž, 2022. "Artificial neural networks for bio-based chemical production or biorefining: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    14. Xiao, Ruirui & Yang, Wei & Cong, Xingshun & Dong, Kai & Xu, Jie & Wang, Dengfeng & Yang, Xin, 2020. "Thermogravimetric analysis and reaction kinetics of lignocellulosic biomass pyrolysis," Energy, Elsevier, vol. 201(C).
    15. He, Yifeng & Liu, Ronghou & Yellezuome, Dominic & Peng, Wanxi & Tabatabaei, Meisam, 2022. "Upgrading of biomass-derived bio-oil via catalytic hydrogenation with Rh and Pd catalysts," Renewable Energy, Elsevier, vol. 184(C), pages 487-497.
    16. Ni, Liangmeng & Feng, Zixing & Zhang, Tao & Gao, Qi & Hou, Yanmei & He, Yuyu & Su, Mengfu & Ren, Hao & Hu, Wanhe & Liu, Zhijia, 2022. "Effect of pyrolysis heating rates on fuel properties of molded charcoal: Imitating industrial pyrolysis process," Renewable Energy, Elsevier, vol. 197(C), pages 257-267.
    17. Gorugantu SriBala & Hans‐Heinrich Carstensen & Kevin M. Van Geem & Guy B. Marin, 2019. "Measuring biomass fast pyrolysis kinetics: State of the art," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 8(2), March.
    18. Yang, Yantao & Qu, Xia & Huang, Guorun & Ren, Suxia & Dong, Lili & Sun, Tanglei & Liu, Peng & Li, Yanling & Lei, Tingzhou & Cai, Junmeng, 2023. "Insight into lignocellulosic biomass torrefaction kinetics with case study of pinewood sawdust torrefaction," Renewable Energy, Elsevier, vol. 215(C).
    19. Andrew N. Amenaghawon & Chinedu L. Anyalewechi & Charity O. Okieimen & Heri Septya Kusuma, 2021. "Biomass pyrolysis technologies for value-added products: a state-of-the-art review," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(10), pages 14324-14378, October.
    20. Feng, Yipeng & Qiu, Keying & Zhang, Zhiping & Li, Chong & Rahman, Md. Maksudur & Cai, Junmeng, 2022. "Distributed activation energy model for lignocellulosic biomass torrefaction kinetics with combined heating program," Energy, Elsevier, vol. 239(PC).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:196:y:2022:i:c:p:1-14. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.