IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v191y2022icp571-579.html
   My bibliography  Save this article

Feasibility analysis of energy-saving potential of the underground ice rink using spectrum splitting sunshade technology

Author

Listed:
  • Gu, Meng
  • Guo, Qi
  • Lu, Shiliang

Abstract

The original intention of skylights for underground ice rinks is to introduce natural light, but incoming solar radiation also affects the ice quality and ice-making energy consumption. As public sports and fitness venues of “Ice Cube”, sustainable operation of the underground ice rink with transparent skylights, has attracted much attention of architectural designers. To reduce the energy consumption without affecting indoor natural lighting, the heat transfer process of a skylight is discussed and modeled, and an advanced sunshade technology using Antimony Tin Oxide (ATO) nanofluids is proposed to filter UV/NIR and reserve visible light for indoor natural lighting. Meanwhile, two factors’ effects, including outdoor solar irradiation and mass fraction of ATO nanofluids on the energy-saving potential of an underground ice rink, are discussed, and results indicate that spectral energy of UV and NIR decreases by 23.16% and 32.99% respectively, with 20 ppm ATO nanofluids, but the energy during visible light region only reduces by 11.56%. Additionally, a high mass fraction lowers indoor solar radiation but also lifts artificial lighting energy consumption, and the mass fraction of 200 ppm is recommended as the optimal mass fraction with annual total energy consumption of 392 GJ.

Suggested Citation

  • Gu, Meng & Guo, Qi & Lu, Shiliang, 2022. "Feasibility analysis of energy-saving potential of the underground ice rink using spectrum splitting sunshade technology," Renewable Energy, Elsevier, vol. 191(C), pages 571-579.
  • Handle: RePEc:eee:renene:v:191:y:2022:i:c:p:571-579
    DOI: 10.1016/j.renene.2022.04.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122004773
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.04.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Umar, Muhammad & Farid, Saqib & Naeem, Muhammad Abubakr, 2022. "Time-frequency connectedness among clean-energy stocks and fossil fuel markets: Comparison between financial, oil and pandemic crisis," Energy, Elsevier, vol. 240(C).
    2. Ryan Hanna & Ahmed Abdulla & Yangyang Xu & David G. Victor, 2021. "Emergency deployment of direct air capture as a response to the climate crisis," Nature Communications, Nature, vol. 12(1), pages 1-13, December.
    3. Xue, Peng & Li, Qian & Xie, Jingchao & Zhao, Mengjing & Liu, Jiaping, 2019. "Optimization of window-to-wall ratio with sunshades in China low latitude region considering daylighting and energy saving requirements," Applied Energy, Elsevier, vol. 233, pages 62-70.
    4. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    5. Duan, Haiyan & Chen, Siyan & Song, Junnian, 2022. "Characterizing regional building energy consumption under joint climatic and socioeconomic impacts," Energy, Elsevier, vol. 245(C).
    6. Pu, Jihong & Shen, Chao & Yang, Shaoxin & Zhang, Chunxiao & Chwieduk, Dorota & Kalogirou, Soteris A., 2022. "Feasibility investigation on using silver nanorods in energy saving windows for light/heat decoupling," Energy, Elsevier, vol. 245(C).
    7. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
    8. Zhang, Chunxiao & Shen, Chao & Wei, Shen & Zhang, Yingbo & Sun, Cheng, 2021. "Flexible management of heat/electricity of novel PV/T systems with spectrum regulation by Ag nanofluids," Energy, Elsevier, vol. 221(C).
    9. Chen, Qi & Kuang, Zhonghong & Liu, Xiaohua & Zhang, Tao, 2022. "Energy storage to solve the diurnal, weekly, and seasonal mismatch and achieve zero-carbon electricity consumption in buildings," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
    2. Bai, Yufu & Long, Tianhe & Li, Wuyan & Li, Yongcai & Liu, Shuli & Wang, Zhihao & Lu, Jun & Huang, Sheng, 2022. "Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter," Renewable Energy, Elsevier, vol. 193(C), pages 1001-1018.
    3. Yu, Xiyu & Huang, Maoquan & Wang, Xinyu & Sun, Qie & Tang, G.H. & Du, Mu, 2022. "Toward optical selectivity aerogels by plasmonic nanoparticles doping," Renewable Energy, Elsevier, vol. 190(C), pages 741-751.
    4. Liang, Shen & Zheng, Hongfei & Wang, Xuanlin & Ma, Xinglong & Zhao, Zhiyong, 2022. "Design and performance validation on a solar louver with concentrating-photovoltaic-thermal modules," Renewable Energy, Elsevier, vol. 191(C), pages 71-83.
    5. Sun, Yuying & Hao, Yingying & Wang, Dan & Wang, Wei & Deng, Shiming & Qi, Haoran & Xue, Peng, 2022. "A predictive control strategy for electrochromic glazing to balance the visual and thermal environmental requirements: Approach and energy-saving potential assessment," Renewable Energy, Elsevier, vol. 194(C), pages 334-348.
    6. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    7. Qin, Caiyan & Zhu, Qunzhi & Li, Xiaoke & Sun, Chunlei & Chen, Meijie & Wu, Xiaohu, 2022. "Slotted metallic nanospheres with both electric and magnetic resonances for solar thermal conversion," Renewable Energy, Elsevier, vol. 197(C), pages 79-88.
    8. Pu, Jihong & Shen, Chao & Yang, Shaoxin & Zhang, Chunxiao & Chwieduk, Dorota & Kalogirou, Soteris A., 2022. "Feasibility investigation on using silver nanorods in energy saving windows for light/heat decoupling," Energy, Elsevier, vol. 245(C).
    9. Huang, Ju & Han, Xinyue & Zhao, Xiaobo & Khosa, Azhar Abbas & Meng, Chunfeng, 2022. "The stability, optical behavior optimization of Ag@SiO2 nanofluids and their application in spectral splitting photovoltaic/thermal receivers," Renewable Energy, Elsevier, vol. 190(C), pages 865-878.
    10. Xia, Xiaokang & Cao, Xuhui & Li, Niansi & Yu, Bendong & Liu, Huifang & Jie ji,, 2023. "Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids," Energy, Elsevier, vol. 271(C).
    11. Wang, Fanyi & Ma, Wanying & Mirza, Nawazish & Altuntaş, Mehmet, 2023. "Green financing, financial uncertainty, geopolitical risk, and oil prices volatility," Resources Policy, Elsevier, vol. 83(C).
    12. Choi, Gahyun & Park, Kwangyeol & Yi, Eojin & Ahn, Kwangwon, 2023. "Price fairness: Clean energy stocks and the overall market," Chaos, Solitons & Fractals, Elsevier, vol. 168(C).
    13. Waibel, Christoph & Evins, Ralph & Carmeliet, Jan, 2019. "Co-simulation and optimization of building geometry and multi-energy systems: Interdependencies in energy supply, energy demand and solar potentials," Applied Energy, Elsevier, vol. 242(C), pages 1661-1682.
    14. Naeem, Muhammad Abubakr & Arfaoui, Nadia, 2023. "Exploring downside risk dependence across energy markets: Electricity, conventional energy, carbon, and clean energy during episodes of market crises," Energy Economics, Elsevier, vol. 127(PB).
    15. Li, Tianyu & Yue, Xiao-Guang & Waheed, Humayun & Yıldırım, Bilal, 2023. "Can energy efficiency and natural resources foster economic growth? Evidence from BRICS countries," Resources Policy, Elsevier, vol. 83(C).
    16. Arfaoui, Nadia & Naeem, Muhammad Abubakr & Boubaker, Sabri & Mirza, Nawazish & Karim, Sitara, 2023. "Interdependence of clean energy and green markets with cryptocurrencies," Energy Economics, Elsevier, vol. 120(C).
    17. Ángel Galán-Martín & Daniel Vázquez & Selene Cobo & Niall Dowell & José Antonio Caballero & Gonzalo Guillén-Gosálbez, 2021. "Delaying carbon dioxide removal in the European Union puts climate targets at risk," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    18. Qi, Haozhi & Wu, Tiantian & Chen, Hao & Lu, Xiuling, 2023. "Time-frequency connectedness and cross-quantile dependence between carbon emission trading and commodity markets: Evidence from China," Resources Policy, Elsevier, vol. 82(C).
    19. Xu, Baochang & Li, Sihui & Afzal, Ayesha & Mirza, Nawazish & Zhang, Meng, 2022. "The impact of financial development on environmental sustainability: A European perspective," Resources Policy, Elsevier, vol. 78(C).
    20. Naeem, Muhammad Abubakr & Karim, Sitara & Farid, Saqib & Tiwari, Aviral Kumar, 2022. "Comparing the asymmetric efficiency of dirty and clean energy markets pre and during COVID-19," Economic Analysis and Policy, Elsevier, vol. 75(C), pages 548-562.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:191:y:2022:i:c:p:571-579. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.