IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v283y2023ics0360544223025057.html
   My bibliography  Save this article

Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids

Author

Listed:
  • Pu, Jihong
  • Shen, Chao
  • Lu, Lin

Abstract

Building envelopes with energy-generation from renewable sources are highly promising for the green development of buildings. Recently, a new concept of energy-efficient window i.e., the water flow window (WFW), that can capture solar energy for domestic water heating, was reported. However, the output heating capacity of the WFW is inferior due to the limited absorption bandwidth of water. In this study, the ATO-based liquid filled window (LFW) was newly conceived for broadband solar harvesting and effective indoor solar regulation, and then a transient model was developed to figure out the annual performance of ATO-based LFW. By comparing the performance of ATO-based LFW with different ATO concentrations, it was found that an ATO mass fraction of 100 ppm is a positive solution for feasible luminous transmittance about 52%, and excellent monthly output heating capacity between 19 and 60 MJ/(m2·month) in Beijing. With the 100 ppm ATO-based LFW nanofluids, the output heating capacity and the annual solar heat gain coefficient (SHGC) of the ATO-based LFW in four cities with different climatic conditions were discussed. The results indicate that the 100 ppm ATO-based LFW shows the highest level of output thermal energy in Hong Kong, the highest output water temperature in Beijing, the lowest output heating capacity in Harbin, and the lowest cooling energy-saving potential in Chengdu. We believe that the ATO-based LFW is a feasible and applicable solution for achieving carbon neutrality in buildings, especially for buildings in hot regions.

Suggested Citation

  • Pu, Jihong & Shen, Chao & Lu, Lin, 2023. "Investigating the annual energy-saving and energy-output behaviors of a novel liquid-flow window with spectral regulation of ATO nanofluids," Energy, Elsevier, vol. 283(C).
  • Handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025057
    DOI: 10.1016/j.energy.2023.129111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223025057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lyu, Yuan-Li & Chow, Tin-Tai & Wang, Jin-Liang, 2018. "Numerical prediction of thermal performance of liquid-flow window in different climates with anti-freeze," Energy, Elsevier, vol. 157(C), pages 412-423.
    2. Zhang, Yingbo & Shan, Kui & Li, Xiuming & Li, Hangxin & Wang, Shengwei, 2023. "Research and Technologies for next-generation high-temperature data centers – State-of-the-arts and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Cuce, Erdem & Riffat, Saffa B., 2015. "A state-of-the-art review on innovative glazing technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 695-714.
    4. Buratti, C. & Moretti, E., 2012. "Experimental performance evaluation of aerogel glazing systems," Applied Energy, Elsevier, vol. 97(C), pages 430-437.
    5. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Wei, Wenzhe, 2023. "Heat harvesting characteristics of building façades integrated photovoltaic /thermal-heat pump system in winter," Renewable Energy, Elsevier, vol. 215(C).
    6. Lyu, Yuan-Li & Liu, Wen-Jie & Su, Hua & Wu, Xuan, 2019. "Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates," Energy, Elsevier, vol. 175(C), pages 353-364.
    7. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Zhang, Yingbo, 2023. "Cooling performance of all-orientated building facades integrated with photovoltaic-sky radiative cooling system in summer," Renewable Energy, Elsevier, vol. 217(C).
    8. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    9. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Pu, Jihong, 2022. "Feasibility investigation of spectral splitting photovoltaic /thermal systems for domestic space heating," Renewable Energy, Elsevier, vol. 192(C), pages 231-242.
    10. Wang, Julian (Jialiang) & Shi, Donglu, 2017. "Spectral selective and photothermal nano structured thin films for energy efficient windows," Applied Energy, Elsevier, vol. 208(C), pages 83-96.
    11. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
    12. Liu, Wenjie & Chow, Tin-tai, 2021. "Performance analysis of liquid-flow-window with submerged heat exchanger," Renewable Energy, Elsevier, vol. 168(C), pages 319-331.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Xue & Sun, Yanyi & Liu, Xiao & Ming, Yang & Wu, Yupeng, 2024. "Development of a comprehensive method to estimate the optical, thermal and electrical performance of a complex PV window for building integration," Energy, Elsevier, vol. 294(C).
    2. Han, Miao & Pu, Jihong & Liu, Yongdong & Liu, Xingjiang & Mei, Hongyuan & Shen, Chao, 2023. "Near-infrared blocking window based on ATO-CWO/PVB nano-lamination," Renewable Energy, Elsevier, vol. 219(P1).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pu, Jihong & Han, Miao & Lu, Lin & Shen, Chao & Wang, Fang, 2024. "Spectrally selective design and energy-saving demonstration of a novel liquid-filled window in hot and humid region," Energy, Elsevier, vol. 297(C).
    2. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Wei, Wenzhe, 2023. "Heat harvesting characteristics of building façades integrated photovoltaic /thermal-heat pump system in winter," Renewable Energy, Elsevier, vol. 215(C).
    3. Han, Miao & Pu, Jihong & Liu, Yongdong & Liu, Xingjiang & Mei, Hongyuan & Shen, Chao, 2023. "Near-infrared blocking window based on ATO-CWO/PVB nano-lamination," Renewable Energy, Elsevier, vol. 219(P1).
    4. Lyu, Yuanli & Wang, Ting & Peng, Hao & Zheng, Shukui & Qi, Xuejun & Su, Hua & Chow, Tintai, 2023. "Experimental study on thermal performance of finned tube water flow window," Renewable Energy, Elsevier, vol. 219(P2).
    5. Zhang, Chunxiao & Chen, Lei & Zhou, Ziqi & Wang, Zhanwei & Wang, Lin & Zhang, Yingbo, 2023. "Cooling performance of all-orientated building facades integrated with photovoltaic-sky radiative cooling system in summer," Renewable Energy, Elsevier, vol. 217(C).
    6. Chen, Sihui & Lyu, Yuanli & Li, Chunying & Li, Xueyang & Yang, Wei & Wang, Ting, 2024. "Liquid flow glazing contributes to energy-efficient buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).
    7. Hong, Wenpeng & Li, Boyu & Li, Haoran & Niu, Xiaojuan & Li, Yan & Lan, Jingrui, 2022. "Recent progress in thermal energy recovery from the decoupled photovoltaic/thermal system equipped with spectral splitters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Li, Chunying & Tang, Haida, 2020. "Evaluation on year-round performance of double-circulation water-flow window," Renewable Energy, Elsevier, vol. 150(C), pages 176-190.
    9. Cuce, Erdem & Cuce, Pinar Mert & Young, Chin-Huai, 2016. "Energy saving potential of heat insulation solar glass: Key results from laboratory and in-situ testing," Energy, Elsevier, vol. 97(C), pages 369-380.
    10. Lyu, Yuan-Li & Liu, Wen-Jie & Su, Hua & Wu, Xuan, 2019. "Numerical analysis on the advantages of evacuated gap insulation of vacuum-water flow window in building energy saving under various climates," Energy, Elsevier, vol. 175(C), pages 353-364.
    11. Gu, Meng & Guo, Qi & Lu, Shiliang, 2022. "Feasibility analysis of energy-saving potential of the underground ice rink using spectrum splitting sunshade technology," Renewable Energy, Elsevier, vol. 191(C), pages 571-579.
    12. Zhou, Yuekuan & Zheng, Siqian, 2020. "Climate adaptive optimal design of an aerogel glazing system with the integration of a heuristic teaching-learning-based algorithm in machine learning-based optimization," Renewable Energy, Elsevier, vol. 153(C), pages 375-391.
    13. Chan, Lok Shun, 2023. "Numerical study on the thermal performance of water flow window fed with air-conditioning condensate," Energy, Elsevier, vol. 263(PB).
    14. Yuanli Lyu & Sihui Chen & Can Liu & Jun Li & Chunying Li & Hua Su, 2022. "Thermal Characteristics Simulation of an Energy-Conserving Facade: Water Flow Window," Sustainability, MDPI, vol. 14(5), pages 1-22, February.
    15. Yamaç, Halil İbrahim & Koca, Ahmet, 2023. "Performance analysis of triple glazing water flow window systems during winter season," Energy, Elsevier, vol. 282(C).
    16. Xia, Xiaokang & Cao, Xuhui & Li, Niansi & Yu, Bendong & Liu, Huifang & Jie ji,, 2023. "Study on a spectral splitting photovoltaic/thermal system based on CNT/Ag mixed nanofluids," Energy, Elsevier, vol. 271(C).
    17. Zhou, Yuekuan & Zheng, Siqian, 2020. "Uncertainty study on thermal and energy performances of a deterministic parameters based optimal aerogel glazing system using machine-learning method," Energy, Elsevier, vol. 193(C).
    18. Cristina Cornaro & Ludovica Renzi & Marco Pierro & Aldo Di Carlo & Alessandro Guglielmotti, 2018. "Thermal and Electrical Characterization of a Semi-Transparent Dye-Sensitized Photovoltaic Module under Real Operating Conditions," Energies, MDPI, vol. 11(1), pages 1-16, January.
    19. Hu, Xin & Zhang, Yingbo & Cai, Wei & Ming, Yang & Yu, Rujun & Yang, Hongyu & Noor, Nuruzzaman & Fei, Bin, 2023. "Transparent wood with heat shielding and high fire safety properties for energy saving applications," Renewable Energy, Elsevier, vol. 219(P1).
    20. Han, Shulun & Sun, Yuying & Wang, Wei & Xu, Wenjing & Wei, Wenzhe, 2023. "Optimal design method for electrochromic window split-pane configuration to enhance building energy efficiency," Renewable Energy, Elsevier, vol. 219(P1).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:283:y:2023:i:c:s0360544223025057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.