IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v245y2022ics036054422200192x.html
   My bibliography  Save this article

Feasibility investigation on using silver nanorods in energy saving windows for light/heat decoupling

Author

Listed:
  • Pu, Jihong
  • Shen, Chao
  • Yang, Shaoxin
  • Zhang, Chunxiao
  • Chwieduk, Dorota
  • Kalogirou, Soteris A.

Abstract

Metallic nanoparticles exhibit localized surface plasmon resonance, which gifts them with enhanced solar energy absorption in a special band. With an adjustable plasma resonance band from the visible light to the infrared, silver nanorods (AgNRs) are potential candidates for energy saving application. In this research, the optical properties of AgNRs were investigated by the Discrete Dipole Approximation (DDA) approach, and the spectral response of AgNR/PMMA nanocomposites were studied by a Monte Carlo method. Meanwhile, the ideal window for high luminous transmittance and high thermal radiation insulation was identified, and then eight hybridizations of AgNRs were proposed to match the ideal window. Based on these eight hybridizations, related performance comparisons were conducted. The cases study shows that when the diameter of AgNRs decreases from 30 to 10 nm, both the radiation shielding performance and luminous transmittance can be improved. While as the diameter of AgNRs decreases from 10 to 5 nm, there are insignificant changes in radiation shielding performance or luminous transmittance. The optimal AgNR/PMMA nanocomposites proposed in this study were demonstrated to be positive solutions for light/heat splitting, as they can ensure higher luminous transmittance than 50%, while blocked the solar radiation by about 80%.

Suggested Citation

  • Pu, Jihong & Shen, Chao & Yang, Shaoxin & Zhang, Chunxiao & Chwieduk, Dorota & Kalogirou, Soteris A., 2022. "Feasibility investigation on using silver nanorods in energy saving windows for light/heat decoupling," Energy, Elsevier, vol. 245(C).
  • Handle: RePEc:eee:energy:v:245:y:2022:i:c:s036054422200192x
    DOI: 10.1016/j.energy.2022.123289
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S036054422200192X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.123289?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to

    for a different version of it.

    References listed on IDEAS

    as
    1. Yu, Sisi & Liu, Yanfeng & Wang, Dengjia & Bahaj, AbuBakr S. & Wu, Yue & Liu, Jiaping, 2021. "Review of thermal and environmental performance of prefabricated buildings: Implications to emission reductions in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    2. Shen, Chao & Lv, Guoquan & Wei, Shen & Zhang, Chunxiao & Ruan, Changyun, 2020. "Investigating the performance of a novel solar lighting/heating system using spectrum-sensitive nanofluids," Applied Energy, Elsevier, vol. 270(C).
    3. Zhang, Chunxiao & Shen, Chao & Wei, Shen & Zhang, Yingbo & Sun, Cheng, 2021. "Flexible management of heat/electricity of novel PV/T systems with spectrum regulation by Ag nanofluids," Energy, Elsevier, vol. 221(C).
    4. Ghosh, A. & Mallick, T.K., 2018. "Evaluation of colour properties due to switching behaviour of a PDLC glazing for adaptive building integration," Renewable Energy, Elsevier, vol. 120(C), pages 126-133.
    5. Ghosh, Aritra & Norton, Brian, 2019. "Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply," Renewable Energy, Elsevier, vol. 131(C), pages 993-1001.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kuan-Ting Yeh & Wei-Chieh Hu & Chun-Kuei Chen & Ta-Hui Lin & Feng-Yi Lin & Chung-Chih Cheng & Tzu-Ching Su & Pei-Yu Yu, 2025. "The Influence of Electrochromic Film on Indoor Environmental Quality," Energies, MDPI, vol. 18(10), pages 1-17, May.
    2. Gu, Meng & Guo, Qi & Lu, Shiliang, 2022. "Feasibility analysis of energy-saving potential of the underground ice rink using spectrum splitting sunshade technology," Renewable Energy, Elsevier, vol. 191(C), pages 571-579.
    3. Zhang, Chunxiao & Shen, Chao & Zhang, Yingbo & Sun, Cheng & Chwieduk, Dorota & Kalogirou, Soteris A., 2021. "Optimization of the electricity/heat production of a PV/T system based on spectral splitting with Ag nanofluid," Renewable Energy, Elsevier, vol. 180(C), pages 30-39.
    4. Guo, Wenwen & Kong, Li & Chow, Tintai & Li, Chunying & Zhu, Qunzhi & Qiu, Zhongzhu & Li, Lin & Wang, Yalin & Riffat, Saffa B., 2020. "Energy performance of photovoltaic (PV) windows under typical climates of China in terms of transmittance and orientation," Energy, Elsevier, vol. 213(C).
    5. Chen, Junjie & Liu, Pei & Lin, Borong & Zhou, Hao & Papachristos, George, 2025. "The diffusion of prefabrication technology and its potential for CO2 emissions reduction in China: A combined system dynamics and agent-based study," Technological Forecasting and Social Change, Elsevier, vol. 210(C).
    6. Yang, Haotian & Liu, Xingjiang & Gu, Yaping & Shen, Chao, 2025. "A novel photovoltaic-photothermal coupling skylight based on spectral complementation conception: System design and performance investigation," Renewable Energy, Elsevier, vol. 243(C).
    7. Field, Edward & Ghosh, Aritra, 2023. "Energy assessment of advanced and switchable windows for less energy-hungry buildings in the UK," Energy, Elsevier, vol. 283(C).
    8. Nundy, Srijita & Ghosh, Aritra, 2020. "Thermal and visual comfort analysis of adaptive vacuum integrated switchable suspended particle device window for temperate climate," Renewable Energy, Elsevier, vol. 156(C), pages 1361-1372.
    9. López-Guerrero, Rafael E. & Vera, Sergio & Carpio, Manuel, 2022. "A quantitative and qualitative evaluation of the sustainability of industrialised building systems: A bibliographic review and analysis of case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Wen Jiang & Menglin Liu & Lu Gan & Chong Wang, 2021. "Optimal Pricing, Ordering, and Coordination for Prefabricated Building Supply Chain with Power Structure and Flexible Cap-and-Trade," Mathematics, MDPI, vol. 9(19), pages 1-22, September.
    11. Bai, Yufu & Long, Tianhe & Li, Wuyan & Li, Yongcai & Liu, Shuli & Wang, Zhihao & Lu, Jun & Huang, Sheng, 2022. "Experimental investigation of natural ventilation characteristics of a solar chimney coupled with earth-air heat exchanger (SCEAHE) system in summer and winter," Renewable Energy, Elsevier, vol. 193(C), pages 1001-1018.
    12. Keçebaş, Ali & Güler, Onur Vahip & Georgiev, Aleksandar G. & Gürbüz, Emine Yağız & Tuncer, Azim Doğuş & Şahinkesen, İstemihan, 2025. "Thermodynamic analysis and efficiency enhancement of PV/T systems using ethanol-based phase change material," Energy, Elsevier, vol. 320(C).
    13. Mohammad Dabbagh & Moncef Krarti, 2021. "Optimal Control Strategies for Switchable Transparent Insulation Systems Applied to Smart Windows for US Residential Buildings," Energies, MDPI, vol. 14(10), pages 1-24, May.
    14. Ghosh, Aritra & Norton, Brian, 2019. "Optimization of PV powered SPD switchable glazing to minimise probability of loss of power supply," Renewable Energy, Elsevier, vol. 131(C), pages 993-1001.
    15. Chen, Zhendong & Ghosh, Aritra, 2024. "Techno-financial analysis of 100 % renewable electricity for the south west region of the UK by 2050," Renewable Energy, Elsevier, vol. 237(PB).
    16. Li, Chunying & Tang, Haida, 2020. "Evaluation on year-round performance of double-circulation water-flow window," Renewable Energy, Elsevier, vol. 150(C), pages 176-190.
    17. Myunghwan Oh & Jaesung Park & Seungjun Roh & Chulsung Lee, 2018. "Deducing the Optimal Control Method for Electrochromic Triple Glazing through an Integrated Evaluation of Building Energy and Daylight Performance," Energies, MDPI, vol. 11(9), pages 1-22, August.
    18. Pu, Jihong & Li, Yingxiao & Xu, Dan & Shen, Chao & Lu, Lin, 2025. "A quantitative investigation on the cooling benefits of retrofitting building skylights with broadband-spectrum selectivity in China," Applied Energy, Elsevier, vol. 381(C).
    19. Qu, Xiaosong & Liang, Hao & Wu, Gang & Feng, Chaoqing & Zhang, Yi & Liu, Zhikang & Yuan, Guanghao & Hai, Yunrui, 2024. "A novel study on spectral division and photothermal regulation in Chinese solar greenhouse derive from nanofluid," Energy, Elsevier, vol. 313(C).
    20. Shang, Zeguo & Hao, Yi & Xu, Chengyuan & Li, Xingcan, 2024. "Prediction of radiation characteristics of solar collectors with multiple geometrical configurations based on Monte Carlo considering absorption element," Energy, Elsevier, vol. 288(C).

    More about this item

    Keywords

    ;
    ;
    ;
    ;

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:245:y:2022:i:c:s036054422200192x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.