IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v190y2022icp294-308.html
   My bibliography  Save this article

System and technoeconomic analysis of solar thermochemical hydrogen production

Author

Listed:
  • Ma, Zhiwen
  • Davenport, Patrick
  • Saur, Genevieve

Abstract

Hydrogen is a promising energy carrier that can be obtained from various feedstocks using renewable energy sources. Direct solar thermochemical hydrogen (STCH) production by water splitting can utilize the full spectrum of solar radiation and has the potential to achieve high solar energy conversion efficiencies. Currently STCH research areas focus on material discovery. This paper evaluates the performance of various STCH materials in the context of a system platform to assess techno-economic benefits and gaps in the path to STCH scale-up. To analyze the hydrogen production cost, a concentrating solar thermal (CST) system is introduced as a platform for integrating STCH materials and accommodating generalized thermochemical processes. The thermochemical process is based on a two-step STCH cycle using metal oxide that consists of a high temperature step for metal oxide reduction, followed by an oxidation step for water splitting at a lower temperature. A preferred configuration is to have the high temperature step occurring in a directly irradiated solar receiver reactor. To this end, we conceptualized a receiver design and associated solar field layout and investigated STCH operational boundaries, component costs and sensitivity parameters on the $2/kgH2 goal of hydrogen production. The study explored system-related variables and factors associated with scaling up. The CST platform allows more comprehensive studies that encompass aspects of STCH materials and systems such as cost, hydrogen productivity and replacement frequency, alongside other system components like heliostat field, tower, and potential receiver costs.

Suggested Citation

  • Ma, Zhiwen & Davenport, Patrick & Saur, Genevieve, 2022. "System and technoeconomic analysis of solar thermochemical hydrogen production," Renewable Energy, Elsevier, vol. 190(C), pages 294-308.
  • Handle: RePEc:eee:renene:v:190:y:2022:i:c:p:294-308
    DOI: 10.1016/j.renene.2022.03.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122003925
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Koepf, E. & Alxneit, I. & Wieckert, C. & Meier, A., 2017. "A review of high temperature solar driven reactor technology: 25years of experience in research and development at the Paul Scherrer Institute," Applied Energy, Elsevier, vol. 188(C), pages 620-651.
    2. James L. Young & Myles A. Steiner & Henning Döscher & Ryan M. France & John A. Turner & Todd G. Deutsch, 2017. "Direct solar-to-hydrogen conversion via inverted metamorphic multi-junction semiconductor architectures," Nature Energy, Nature, vol. 2(4), pages 1-8, April.
    3. Thomas Pregger & Günter Schiller & Felix Cebulla & Ralph-Uwe Dietrich & Simon Maier & André Thess & Andreas Lischke & Nathalie Monnerie & Christian Sattler & Patrick Le Clercq & Bastian Rauch & Markus, 2019. "Future Fuels—Analyses of the Future Prospects of Renewable Synthetic Fuels," Energies, MDPI, vol. 13(1), pages 1-36, December.
    4. Deng, Yimin & Dewil, Raf & Appels, Lise & Li, Shuo & Baeyens, Jan & Degrève, Jan & Wang, Guirong, 2021. "Thermo-chemical water splitting: Selection of priority reversible redox reactions by multi-attribute decision making," Renewable Energy, Elsevier, vol. 170(C), pages 800-810.
    5. Mao, Yanpeng & Gao, Yibo & Dong, Wei & Wu, Han & Song, Zhanlong & Zhao, Xiqiang & Sun, Jing & Wang, Wenlong, 2020. "Hydrogen production via a two-step water splitting thermochemical cycle based on metal oxide – A review," Applied Energy, Elsevier, vol. 267(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pavlos Nikolaidis, 2023. "Solar Energy Harnessing Technologies towards De-Carbonization: A Systematic Review of Processes and Systems," Energies, MDPI, vol. 16(17), pages 1-39, August.
    2. Aubaid Ullah & Nur Awanis Hashim & Mohamad Fairus Rabuni & Mohd Usman Mohd Junaidi, 2023. "A Review on Methanol as a Clean Energy Carrier: Roles of Zeolite in Improving Production Efficiency," Energies, MDPI, vol. 16(3), pages 1-35, February.
    3. Stéphane Abanades, 2022. "Redox Cycles, Active Materials, and Reactors Applied to Water and Carbon Dioxide Splitting for Solar Thermochemical Fuel Production: A Review," Energies, MDPI, vol. 15(19), pages 1-28, September.
    4. Yan, Jian & Peng, YouDuo & Liu, YongXiang, 2023. "Optical performance evaluation of a large solar dish/Stirling power generation system under self-weight load based on optical-mechanical integration method," Energy, Elsevier, vol. 264(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Sanghyun & Kim, Eunsung & Jeong, Saerok, 2023. "Evaluating the sustainability of the hydrogen economy using multi-criteria decision-making analysis in Korea," Renewable Energy, Elsevier, vol. 204(C), pages 485-492.
    2. Rahul R. Bhosale, 2023. "Recent Developments in Ceria-Driven Solar Thermochemical Water and Carbon Dioxide Splitting Redox Cycle," Energies, MDPI, vol. 16(16), pages 1-30, August.
    3. Abanades, Stéphane & André, Laurie, 2018. "Design and demonstration of a high temperature solar-heated rotary tube reactor for continuous particles calcination," Applied Energy, Elsevier, vol. 212(C), pages 1310-1320.
    4. Yadav, Deepak & Banerjee, Rangan, 2022. "Thermodynamic and economic analysis of the solar carbothermal and hydrometallurgy routes for zinc production," Energy, Elsevier, vol. 247(C).
    5. Isaac Holmes-Gentle & Saurabh Tembhurne & Clemens Suter & Sophia Haussener, 2023. "Kilowatt-scale solar hydrogen production system using a concentrated integrated photoelectrochemical device," Nature Energy, Nature, vol. 8(6), pages 586-596, June.
    6. Ma, Ben-Chi & Lin, Hua & Zhu, Yizhou & Zeng, Zilong & Geng, Jiafeng & Jing, Dengwei, 2022. "A new Concentrated Photovoltaic Thermal-Hydrogen system with photocatalyst suspension as optical liquid filter," Renewable Energy, Elsevier, vol. 194(C), pages 1221-1232.
    7. Zhu, Qibin & Xuan, Yimin & Liu, Xianglei & Yang, Lili & Lian, Wenlei & Zhang, Jin, 2020. "A 130 kWe solar simulator with tunable ultra-high flux and characterization using direct multiple lamps mapping," Applied Energy, Elsevier, vol. 270(C).
    8. Daphne Oudejans & Michele Offidani & Achilleas Constantinou & Stefania Albonetti & Nikolaos Dimitratos & Atul Bansode, 2022. "A Comprehensive Review on Two-Step Thermochemical Water Splitting for Hydrogen Production in a Redox Cycle," Energies, MDPI, vol. 15(9), pages 1-24, April.
    9. Efstathios E. Michaelides, 2021. "Thermodynamics, Energy Dissipation, and Figures of Merit of Energy Storage Systems—A Critical Review," Energies, MDPI, vol. 14(19), pages 1-41, September.
    10. Keisuke Obata & Michael Schwarze & Tabea A. Thiel & Xinyi Zhang & Babu Radhakrishnan & Ibbi Y. Ahmet & Roel Krol & Reinhard Schomäcker & Fatwa F. Abdi, 2023. "Solar-driven upgrading of biomass by coupled hydrogenation using in situ (photo)electrochemically generated H2," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    11. Mohsen Fallah Vostakola & Babak Salamatinia & Bahman Amini Horri, 2022. "A Review on Recent Progress in the Integrated Green Hydrogen Production Processes," Energies, MDPI, vol. 15(3), pages 1-41, February.
    12. Deng, Yimin & Li, Shuo & Appels, Lise & Zhang, Huili & Sweygers, Nick & Baeyens, Jan & Dewil, Raf, 2023. "Steam reforming of ethanol by non-noble metal catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).
    13. Zhang, Lihui & Wang, Jianing & Li, Songrui, 2022. "Regional suitability analysis of the rural biogas power generation industry:A case of China," Renewable Energy, Elsevier, vol. 194(C), pages 293-306.
    14. Mohamed Benghanem & Adel Mellit & Hamad Almohamadi & Sofiane Haddad & Nedjwa Chettibi & Abdulaziz M. Alanazi & Drigos Dasalla & Ahmed Alzahrani, 2023. "Hydrogen Production Methods Based on Solar and Wind Energy: A Review," Energies, MDPI, vol. 16(2), pages 1-31, January.
    15. Gabriel Zsembinszki & Aran Solé & Camila Barreneche & Cristina Prieto & A. Inés Fernández & Luisa F. Cabeza, 2018. "Review of Reactors with Potential Use in Thermochemical Energy Storage in Concentrated Solar Power Plants," Energies, MDPI, vol. 11(9), pages 1-23, September.
    16. Pascual, S. & Lisbona, P. & Bailera, M. & Romeo, L.M., 2021. "Design and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants," Energy, Elsevier, vol. 220(C).
    17. Jiří Bojanovský & Vítězslav Máša & Igor Hudák & Pavel Skryja & Josef Hopjan, 2022. "Rotary Kiln, a Unit on the Border of the Process and Energy Industry—Current State and Perspectives," Sustainability, MDPI, vol. 14(21), pages 1-34, October.
    18. Menz, Steffen & Lampe, Jörg & Krause, Johann & Seeger, Thomas & Fend, Thomas, 2022. "Holistic energy flow analysis of a solar driven thermo-chemical reactor set-up for sustainable hydrogen production," Renewable Energy, Elsevier, vol. 189(C), pages 1358-1374.
    19. Lucía Arribas & José González-Aguilar & Manuel Romero, 2018. "Solar-Driven Thermochemical Water-Splitting by Cerium Oxide: Determination of Operational Conditions in a Directly Irradiated Fixed Bed Reactor," Energies, MDPI, vol. 11(9), pages 1-15, September.
    20. Malek Msheik & Sylvain Rodat & Stéphane Abanades, 2021. "Methane Cracking for Hydrogen Production: A Review of Catalytic and Molten Media Pyrolysis," Energies, MDPI, vol. 14(11), pages 1-35, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:190:y:2022:i:c:p:294-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.