IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v189y2022icp1337-1357.html
   My bibliography  Save this article

Investigation of annual performance of a building shaded by rooftop PV panels in different climate zones of India

Author

Listed:
  • Bhuvad, Sushant Suresh
  • Udayraj,

Abstract

Photovoltaics panels are generally used on rooftop for electricity generation. However, installation of PV on the rooftop also has potential impact on the heating and cooling load of the building. This work studied these indirect benefits of rooftop PV panels by conducting experiments in Raipur, India, and compared the results with the exposed roof. Further, mathematical model is presented to analyze the annual effect of PV shading in terms of thermal load saving and power generation. Annual variation of cooling/heating load, PV power generation and overall energy-saving efficiency index is presented for different climatic zones of India. Average annual reduction in the roof and ceiling temperatures for different cities are in the range 6.05–10.96 °C and 3.94–7.15 °C, respectively. Annual cooling load reduced by 70.33–94.37%. Although PV panels shading shows negative impact during the winter season by increasing the heating load of building in all the climatic zones, the overall thermal load of building may reduce up to 22.76–74.07%. Furthermore, the overall energy-saving efficiency index varies from 21.27 to 25.12%, with maximum efficiency observed for Jodhpur city followed by Raipur. Overall, this study highlights the potential of rooftop PV application in buildings under different climatic zones of India.

Suggested Citation

  • Bhuvad, Sushant Suresh & Udayraj,, 2022. "Investigation of annual performance of a building shaded by rooftop PV panels in different climate zones of India," Renewable Energy, Elsevier, vol. 189(C), pages 1337-1357.
  • Handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1337-1357
    DOI: 10.1016/j.renene.2022.03.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148122002828
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2022.03.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bhuvad, Sushant Suresh & Azad, Rajnish & Lanjewar, Atul, 2022. "Thermal performance analysis of apex-up discrete arc ribs solar air heater-an experimental study," Renewable Energy, Elsevier, vol. 185(C), pages 403-415.
    2. Ahmed Bilal Awan & Mohammed Alghassab & Muhammad Zubair & Abdul Rauf Bhatti & Muhammad Uzair & Ghulam Abbas, 2020. "Comparative Analysis of Ground-Mounted vs. Rooftop Photovoltaic Systems Optimized for Interrow Distance between Parallel Arrays," Energies, MDPI, vol. 13(14), pages 1-21, July.
    3. Dehwah, Ammar H.A. & Asif, Muhammad, 2019. "Assessment of net energy contribution to buildings by rooftop photovoltaic systems in hot-humid climates," Renewable Energy, Elsevier, vol. 131(C), pages 1288-1299.
    4. Cheng, C.L. & Sanchez Jimenez, Charles S. & Lee, Meng-Chieh, 2009. "Research of BIPV optimal tilted angle, use of latitude concept for south orientated plans," Renewable Energy, Elsevier, vol. 34(6), pages 1644-1650.
    5. Wang, Yiping & Tian, Wei & Ren, Jianbo & Zhu, Li & Wang, Qingzhao, 2006. "Influence of a building's integrated-photovoltaics on heating and cooling loads," Applied Energy, Elsevier, vol. 83(9), pages 989-1003, September.
    6. Peng, Jinqing & Lu, Lin & Yang, Hongxing & Han, Jun, 2013. "Investigation on the annual thermal performance of a photovoltaic wall mounted on a multi-layer façade," Applied Energy, Elsevier, vol. 112(C), pages 646-656.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Janusz Marchwiński & Agnieszka Starzyk & Ołeksij Kopyłow & Karolina Kurtz-Orecka, 2023. "Impact of Atrium Glazing with and without BIPV on Energy Performance of the Low-Rise Building: A Central European Case Study," Energies, MDPI, vol. 16(12), pages 1-25, June.
    2. Skandalos, Nikolaos & Wang, Meng & Kapsalis, Vasileios & D'Agostino, Delia & Parker, Danny & Bhuvad, Sushant Suresh & Udayraj, & Peng, Jinqing & Karamanis, Dimitris, 2022. "Building PV integration according to regional climate conditions: BIPV regional adaptability extending Köppen-Geiger climate classification against urban and climate-related temperature increases," Renewable and Sustainable Energy Reviews, Elsevier, vol. 169(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tiantian Zhang & Meng Wang & Hongxing Yang, 2018. "A Review of the Energy Performance and Life-Cycle Assessment of Building-Integrated Photovoltaic (BIPV) Systems," Energies, MDPI, vol. 11(11), pages 1-34, November.
    2. Zhang, Weilong & Lu, Lin & Peng, Jinqing, 2017. "Evaluation of potential benefits of solar photovoltaic shadings in Hong Kong," Energy, Elsevier, vol. 137(C), pages 1152-1158.
    3. Arkadiusz Dobrzycki & Dariusz Kurz & Stanisław Mikulski & Grzegorz Wodnicki, 2020. "Analysis of the Impact of Building Integrated Photovoltaics (BIPV) on Reducing the Demand for Electricity and Heat in Buildings Located in Poland," Energies, MDPI, vol. 13(10), pages 1-19, May.
    4. Shazmin, S.A.A. & Sipan, I. & Sapri, M. & Ali, H.M. & Raji, F., 2017. "Property tax assessment incentive for green building: Energy saving based-model," Energy, Elsevier, vol. 122(C), pages 329-339.
    5. Yang, Tingting & Athienitis, Andreas K., 2016. "A review of research and developments of building-integrated photovoltaic/thermal (BIPV/T) systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 886-912.
    6. Zhang, Tiantian & Tan, Yufei & Yang, Hongxing & Zhang, Xuedan, 2016. "The application of air layers in building envelopes: A review," Applied Energy, Elsevier, vol. 165(C), pages 707-734.
    7. Azis, Shazmin Shareena Ab., 2021. "Improving present-day energy savings among green building sector in Malaysia using benefit transfer approach: Cooling and lighting loads," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    8. Yadav, S. & Panda, S.K. & Tripathy, M., 2018. "Performance of building integrated photovoltaic thermal system with PV module installed at optimum tilt angle and influenced by shadow," Renewable Energy, Elsevier, vol. 127(C), pages 11-23.
    9. Agrawal, Basant & Tiwari, G.N., 2010. "Optimizing the energy and exergy of building integrated photovoltaic thermal (BIPVT) systems under cold climatic conditions," Applied Energy, Elsevier, vol. 87(2), pages 417-426, February.
    10. Andrzej Ożadowicz & Gabriela Walczyk, 2023. "Energy Performance and Control Strategy for Dynamic Façade with Perovskite PV Panels—Technical Analysis and Case Study," Energies, MDPI, vol. 16(9), pages 1-23, April.
    11. Burillo, Daniel & Chester, Mikhail V. & Pincetl, Stephanie & Fournier, Eric, 2019. "Electricity infrastructure vulnerabilities due to long-term growth and extreme heat from climate change in Los Angeles County," Energy Policy, Elsevier, vol. 128(C), pages 943-953.
    12. Wang, Chuyao & Ji, Jie & Uddin, Md Muin & Yu, Bendong & Song, Zhiying, 2021. "The study of a double-skin ventilated window integrated with CdTe cells in a rural building," Energy, Elsevier, vol. 215(PA).
    13. Dirk Johan van Vuuren & Annlizé L. Marnewick & Jan Harm C. Pretorius, 2021. "Validation of a Simulation-Based Pre-Assessment Process for Solar Photovoltaic Technology Implemented on Rooftops of South African Shopping Centres," Sustainability, MDPI, vol. 13(5), pages 1-26, February.
    14. Luo, Yongqiang & Zhang, Ling & Liu, Zhongbing & Yu, Jinghua & Xu, Xinhua & Su, Xiaosong, 2020. "Towards net zero energy building: The application potential and adaptability of photovoltaic-thermoelectric-battery wall system," Applied Energy, Elsevier, vol. 258(C).
    15. Vardimon, Ran, 2011. "Assessment of the potential for distributed photovoltaic electricity production in Israel," Renewable Energy, Elsevier, vol. 36(2), pages 591-594.
    16. Hu, Jianhui & Chen, Wujun & Yang, Deqing & Zhao, Bing & Song, Hao & Ge, Binbin, 2016. "Energy performance of ETFE cushion roof integrated photovoltaic/thermal system on hot and cold days," Applied Energy, Elsevier, vol. 173(C), pages 40-51.
    17. Luo, Yongqiang & Zhang, Ling & Wang, Xiliang & Xie, Lei & Liu, Zhongbing & Wu, Jing & Zhang, Yelin & He, Xihua, 2017. "A comparative study on thermal performance evaluation of a new double skin façade system integrated with photovoltaic blinds," Applied Energy, Elsevier, vol. 199(C), pages 281-293.
    18. Sharples, Steve & Radhi, Hassan, 2013. "Assessing the technical and economic performance of building integrated photovoltaics and their value to the GCC society," Renewable Energy, Elsevier, vol. 55(C), pages 150-159.
    19. Bougiatioti, Flora & Michael, Aimilios, 2015. "The architectural integration of active solar systems. Building applications in the Eastern Mediterranean region," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 966-982.
    20. Tiwari, Arvind & Dubey, Swapnil & Sandhu, G.S. & Sodha, M.S. & Anwar, S.I., 2009. "Exergy analysis of integrated photovoltaic thermal solar water heater under constant flow rate and constant collection temperature modes," Applied Energy, Elsevier, vol. 86(12), pages 2592-2597, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:189:y:2022:i:c:p:1337-1357. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.