IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v184y2022icp857-870.html
   My bibliography  Save this article

Optimal design of radial inflow turbine for ocean thermal energy conversion based on the installation angle of nozzle blade

Author

Listed:
  • Chen, Yun
  • Liu, Yanjun
  • Liu, Weimin
  • Ge, Yunzheng
  • Xue, Yifan
  • Zhang, Li

Abstract

Ocean Thermal Energy Conversion (OTEC), as a new type of renewable energy, has huge development potential. Turbine is the most critical component in the ocean thermal energy conversion system, which directly determines the performance and energy conversion efficiency of the system. Therefore, the optimal design of turbines is very important to improve the efficiency of ocean thermal energy conversion. Based on the full consideration of the small temperature difference application characteristics of ocean thermal energy conversion and the special thermophysical properties of organic working fluids, this paper designs an ammonia working centripetal turbine with a power of 100 kW for OTEC applications, and then analyzes the effect of different geometric parameters on turbine performance. At the same time, the key parameters of the turbine are optimized based on full three-dimensional CFD numerical simulation analysis. It's shown that the nozzle blade installation angle has a very important impact on the performance of the turbine. Through optimization, when the nozzle blade installation angle reaches 30.5°, the efficiency is 91.77%, which is 6.25% points higher than the design value. The internal flow field performance is the best without obvious shock wave and reverse vortex phenomenon, which further improves the efficiency of the turbine and improves the internal flow.

Suggested Citation

  • Chen, Yun & Liu, Yanjun & Liu, Weimin & Ge, Yunzheng & Xue, Yifan & Zhang, Li, 2022. "Optimal design of radial inflow turbine for ocean thermal energy conversion based on the installation angle of nozzle blade," Renewable Energy, Elsevier, vol. 184(C), pages 857-870.
  • Handle: RePEc:eee:renene:v:184:y:2022:i:c:p:857-870
    DOI: 10.1016/j.renene.2021.12.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121017365
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.12.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nithesh, K.G. & Chatterjee, Dhiman, 2016. "Numerical prediction of the performance of radial inflow turbine designed for ocean thermal energy conversion system," Applied Energy, Elsevier, vol. 167(C), pages 1-16.
    2. Nithesh, K.G. & Chatterjee, Dhiman & Oh, Cheol & Lee, Young-Ho, 2016. "Design and performance analysis of radial-inflow turboexpander for OTEC application," Renewable Energy, Elsevier, vol. 85(C), pages 834-843.
    3. Bahaj, AbuBakr S., 2011. "Generating electricity from the oceans," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(7), pages 3399-3416, September.
    4. Rocha, P.A. Costa & Rocha, H.H. Barbosa & Carneiro, F.O. Moura & Vieira da Silva, M.E. & Bueno, A. Valente, 2014. "k–ω SST (shear stress transport) turbulence model calibration: A case study on a small scale horizontal axis wind turbine," Energy, Elsevier, vol. 65(C), pages 412-418.
    5. Kim, Do-Yeop & Kim, You-Taek, 2017. "Preliminary design and performance analysis of a radial inflow turbine for ocean thermal energy conversion," Renewable Energy, Elsevier, vol. 106(C), pages 255-263.
    6. Chen, Fengyun & Liu, Lei & Peng, Jingping & Ge, Yunzheng & Wu, Haoyu & Liu, Weimin, 2019. "Theoretical and experimental research on the thermal performance of ocean thermal energy conversion system using the rankine cycle mode," Energy, Elsevier, vol. 183(C), pages 497-503.
    7. Carroquino, Javier & Dufo-López, Rodolfo & Bernal-Agustín, José L., 2015. "Sizing of off-grid renewable energy systems for drip irrigation in Mediterranean crops," Renewable Energy, Elsevier, vol. 76(C), pages 566-574.
    8. Martínez, M.L. & Vázquez, G. & Pérez-Maqueo, O. & Silva, R. & Moreno-Casasola, P. & Mendoza-González, G. & López-Portillo, J. & MacGregor-Fors, I. & Heckel, G. & Hernández-Santana, J.R. & García-Franc, 2021. "A systemic view of potential environmental impacts of ocean energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mao, Liangjie & Wei, Changjiang & Zeng, Song & Cai, Mingjie, 2023. "Heat transfer mechanism of cold-water pipe in ocean thermal energy conversion system," Energy, Elsevier, vol. 269(C).
    2. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vera, D. & Baccioli, A. & Jurado, F. & Desideri, U., 2020. "Modeling and optimization of an ocean thermal energy conversion system for remote islands electrification," Renewable Energy, Elsevier, vol. 162(C), pages 1399-1414.
    2. Liu, Yanjun & Xue, Yifan & Chen, Yun & Liu, Weimin & Ge, Yunzheng & Zhang, Li, 2022. "Identification of nonparametric thermodynamic model and optimization of ocean thermal energy conversion radial inflow turbine," Applied Energy, Elsevier, vol. 321(C).
    3. Zhang, Chengbin & Wu, Zhe & Wang, Jiadian & Ding, Ce & Gao, Tieyu & Chen, Yongping, 2023. "Thermodynamic performance of a radial-inflow turbine for ocean thermal energy conversion using ammonia," Renewable Energy, Elsevier, vol. 202(C), pages 907-920.
    4. Ma, Qingfen & Gao, Zezhou & Huang, Jie & Mahian, Omid & Feng, Xin & Lu, Hui & Wang, Shenghui & Wang, Chengpeng & Tang, Rongnian & Li, Jingru, 2023. "Thermodynamic analysis and turbine design of a 100 kW OTEC-ORC with binary non-azeotropic working fluid," Energy, Elsevier, vol. 263(PE).
    5. Huo, Erguang & Chen, Wei & Deng, Zilong & Gao, Wei & Chen, Yongping, 2023. "Thermodynamic analysis and optimization of a combined cooling and power system using ocean thermal energy and solar energy," Energy, Elsevier, vol. 278(PA).
    6. Zou, Aihong & Chassaing, Jean-Camille & Persky, Rodney & Gu, YuanTong & Sauret, Emilie, 2019. "Uncertainty Quantification in high-density fluid radial-inflow turbines for renewable low-grade temperature cycles," Applied Energy, Elsevier, vol. 241(C), pages 313-330.
    7. Li, Xiaoming & Lv, Cui & Yang, Shaoqi & Li, Jian & Deng, Bicai & Li, Qing, 2019. "Preliminary design and performance analysis of a radial inflow turbine for a large-scale helium cryogenic system," Energy, Elsevier, vol. 167(C), pages 106-116.
    8. Zhang, Wei & Li, Ye & Wu, Xiaoni & Guo, Shihao, 2018. "Review of the applied mechanical problems in ocean thermal energy conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 231-244.
    9. Peng, Ningjian & Wang, Enhua & Wang, Wenli, 2023. "Design and analysis of a 1.5 kW single-stage partial-admission impulse turbine for low-grade energy utilization," Energy, Elsevier, vol. 268(C).
    10. Wang, Yuqi & Liu, Tianyuan & Meng, Yue & Zhang, Di & Xie, Yonghui, 2022. "Integrated optimization for design and operation of turbomachinery in a solar-based Brayton cycle based on deep learning techniques," Energy, Elsevier, vol. 252(C).
    11. Wekesa, David Wafula & Wang, Cong & Wei, Yingjie & Danao, Louis Angelo M., 2017. "Analytical and numerical investigation of unsteady wind for enhanced energy capture in a fluctuating free-stream," Energy, Elsevier, vol. 121(C), pages 854-864.
    12. Bernardoni, C. & Binotti, M. & Giostri, A., 2019. "Techno-economic analysis of closed OTEC cycles for power generation," Renewable Energy, Elsevier, vol. 132(C), pages 1018-1033.
    13. Rocha, P. A. Costa & Rocha, H. H. Barbosa & Carneiro, F. O. Moura & da Silva, M. E. Vieira & de Andrade, C. Freitas, 2016. "A case study on the calibration of the k–ω SST (shear stress transport) turbulence model for small scale wind turbines designed with cambered and symmetrical airfoils," Energy, Elsevier, vol. 97(C), pages 144-150.
    14. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    15. Wang, Guohui & Yang, Yanan & Wang, Shuxin & Zhang, Hongwei & Wang, Yanhui, 2019. "Efficiency analysis and experimental validation of the ocean thermal energy conversion with phase change material for underwater vehicle," Applied Energy, Elsevier, vol. 248(C), pages 475-488.
    16. Castro-Santos, Laura & Martins, Elson & Guedes Soares, C., 2016. "Cost assessment methodology for combined wind and wave floating offshore renewable energy systems," Renewable Energy, Elsevier, vol. 97(C), pages 866-880.
    17. Zeyringer, Marianne & Fais, Birgit & Keppo, Ilkka & Price, James, 2018. "The potential of marine energy technologies in the UK – Evaluation from a systems perspective," Renewable Energy, Elsevier, vol. 115(C), pages 1281-1293.
    18. Al Jubori, Ayad M. & Al-Dadah, Raya & Mahmoud, Saad, 2017. "Performance enhancement of a small-scale organic Rankine cycle radial-inflow turbine through multi-objective optimization algorithm," Energy, Elsevier, vol. 131(C), pages 297-311.
    19. Wang, Zhiqi & Xie, Baoqi & Xia, Xiaoxia & Yang, Huya & Zuo, Qingsong & Liu, Zhipeng, 2022. "Energy loss of radial inflow turbine for organic Rankine cycle using mixture based on entropy production method," Energy, Elsevier, vol. 245(C).
    20. Son, Seongmin & Jeong, Yongju & Cho, Seong Kuk & Lee, Jeong Ik, 2020. "Development of supercritical CO2 turbomachinery off-design model using 1D mean-line method and Deep Neural Network," Applied Energy, Elsevier, vol. 263(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:184:y:2022:i:c:p:857-870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.